A002042 a(n) = 7*4^n.
7, 28, 112, 448, 1792, 7168, 28672, 114688, 458752, 1835008, 7340032, 29360128, 117440512, 469762048, 1879048192, 7516192768, 30064771072, 120259084288, 481036337152, 1924145348608, 7696581394432, 30786325577728, 123145302310912, 492581209243648
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (4).
Crossrefs
Programs
-
Magma
[7*4^n: n in [0..30]]; // Vincenzo Librandi, May 31 2011
-
Mathematica
7*4^Range[0, 100] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *) CoefficientList[Series[7/(1-4x), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 25 2015 *) NestList[4#&,7,30] (* Harvey P. Dale, Mar 19 2021 *)
-
PARI
a(n)=7<<(2*n) \\ Charles R Greathouse IV, Apr 17 2012
-
Sage
[7*4^n for n in (0..30)] # G. C. Greubel, Feb 18 2019
Formula
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1), n > 0, with a(0) = 7.
G.f.: 7/(1-4*x). (End)
a(n) = 7*A000302(n). - Michel Marcus, Jun 24 2015
E.g.f.: 7*exp(4*x). - G. C. Greubel, Feb 18 2019
Comments