A002050 Number of simplices in barycentric subdivision of n-simplex.
0, 1, 5, 25, 149, 1081, 9365, 94585, 1091669, 14174521, 204495125, 3245265145, 56183135189, 1053716696761, 21282685940885, 460566381955705, 10631309363962709, 260741534058271801, 6771069326513690645
Offset: 0
References
- R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- R. Austin, R. K. Guy, & R. Nowakowski, Unpublished notes, 1987
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28.
- R. K. Guy, Letter to N. J. A. Sloane, Nov 21 1974
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 149
- D. S. Kluk & N. J. A. Sloane, Correspondence, 1979
- G. J. Simmons, A combinatorial problem associated with a family of combination locks, Math. Mag., 37 (1964), 127-132 (but there are errors).
- G. J. Simmons, A combinatorial problem associated with a family of combination locks, Math. Mag., 37 (1964), 127-132 [Annotated, corrected, scanned copy]
- G. J. Simmons, Letter to N. J. Sloane, May 29 1974
- J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, Vol. 11, pp. 75-97, 1928.
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[n, i]*Sum[StirlingS2[i, k]*k!, {k, 1, i}], {i, 1, n}], {n, 0, 20}] (* Geoffrey Critzer, Apr 12 2009 *) With[{nn=20},CoefficientList[Series[(Exp[2x]-Exp[x])/(2-Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2013 *) a[0] = 0; a[n_] := 2*Sum[k!*StirlingS2[n, k], {k, 2, n}] + 1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 27 2013, after Vladimir Kruchinin *)
-
PARI
a(n)=if(n<0,0,n!*polcoeff(subst((y+y^2)/(1-y),y,exp(x+x*O(x^n))-1),n));
Formula
E.g.f.: (exp(2x)-exp(x))/(2-exp(x)).
a(n) = A000629(n) - 1.
a(n) = Sum_{k=0..n} (-1)^(n-k)k!*S2(n, k)(2^k-1). - Paul Barry, Apr 20 2005
a(n) = Sum_{k=1...n} binomial(n,k)*A000670(k). - Geoffrey Critzer, Apr 12 2009
a(n) ~ n!/log(2)^(n+1). - Vaclav Kotesovec, Jul 29 2013
a(n) = 1 + 2*Sum_{k=2..n} k!*Stirling2(n,k), n > 0, a(0)=1. - Vladimir Kruchinin, Sep 27 2013
G.f.: T(0)/(1-2*x) - 1/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/(2*x^2*(k+1)^2 - (1 - 2*x - 3*x*k)*(1 - 5*x - 3*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 29 2013
G.f.: Sum_{j>=1} j!*x^j / Product_{k=0..j} (1 - (k + 1)*x). - Ilya Gutkovskiy, Apr 04 2019
Extensions
More terms from James Sellers, Aug 22 2000
Comments