cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002050 Number of simplices in barycentric subdivision of n-simplex.

Original entry on oeis.org

0, 1, 5, 25, 149, 1081, 9365, 94585, 1091669, 14174521, 204495125, 3245265145, 56183135189, 1053716696761, 21282685940885, 460566381955705, 10631309363962709, 260741534058271801, 6771069326513690645
Offset: 0

Views

Author

Keywords

Comments

Stirling transform of A052849(n)=[1,4,12,48,240,...] is a(n)=[1,5,25,149,1081,...]. - Michael Somos, Mar 04 2004
Stirling transform of A000142(n-1)=[0,1,2,6,24,...] is a(n-1)=[0,1,5,25,149,...]. - Michael Somos, Mar 04 2004
Stirling transform of 2*A005359(n-1)=[1,0,4,0,48,0,...] is a(n-1)=[1,1,5,25,149,...]. - Michael Somos, Mar 04 2004
"Stirling-Bernoulli transform" of A000225. - Paul Barry, Apr 20 2005
a(n) is the number of nonempty words that can be formed from an alphabet of nonempty subsets of [n] so that the letters in each word are pairwise disjoint. - Geoffrey Critzer, Apr 12 2009
Row sums of A053440. - Peter Bala, Jul 12 2014
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [0, 1, 5, 7, 5, 1, 5, 4, 5, 7, 5, 1, 5, 4, 5, 7, 5, 1, 5, 4, 5, 7, 5, ...], with an apparent period of 6 = phi(9) beginning at a(5). - Peter Bala, Aug 03 2023

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000629, A000670, A002050, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012
A diagonal of the triangle in A241168. Row sums of A053440.

Programs

  • Mathematica
    Table[Sum[Binomial[n, i]*Sum[StirlingS2[i, k]*k!, {k, 1, i}], {i, 1, n}], {n, 0, 20}] (* Geoffrey Critzer, Apr 12 2009 *)
    With[{nn=20},CoefficientList[Series[(Exp[2x]-Exp[x])/(2-Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2013 *)
    a[0] = 0; a[n_] := 2*Sum[k!*StirlingS2[n, k], {k, 2, n}] + 1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 27 2013, after Vladimir Kruchinin *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst((y+y^2)/(1-y),y,exp(x+x*O(x^n))-1),n));

Formula

E.g.f.: (exp(2x)-exp(x))/(2-exp(x)).
a(n) = A000629(n) - 1.
a(n) = Sum_{k=0..n} (-1)^(n-k)k!*S2(n, k)(2^k-1). - Paul Barry, Apr 20 2005
a(n) = Sum_{k=1...n} binomial(n,k)*A000670(k). - Geoffrey Critzer, Apr 12 2009
a(n) ~ n!/log(2)^(n+1). - Vaclav Kotesovec, Jul 29 2013
a(n) = 1 + 2*Sum_{k=2..n} k!*Stirling2(n,k), n > 0, a(0)=1. - Vladimir Kruchinin, Sep 27 2013
G.f.: T(0)/(1-2*x) - 1/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/(2*x^2*(k+1)^2 - (1 - 2*x - 3*x*k)*(1 - 5*x - 3*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 29 2013
G.f.: Sum_{j>=1} j!*x^j / Product_{k=0..j} (1 - (k + 1)*x). - Ilya Gutkovskiy, Apr 04 2019

Extensions

More terms from James Sellers, Aug 22 2000