cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053614 Numbers that are not the sum of distinct triangular numbers.

Original entry on oeis.org

2, 5, 8, 12, 23, 33
Offset: 1

Views

Author

Jud McCranie, Mar 19 2000

Keywords

Comments

The Mathematica program first computes A024940, the number of partitions of n into distinct triangular numbers. Then it finds those n having zero such partitions. It appears that A024940 grows exponentially, which would preclude additional terms in this sequence. - T. D. Noe, Jul 24 2006, Jan 05 2009

Examples

			a(2) = 5: the 7 partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. Among those the distinct ones are 5, 4+1, 3+2. None contains all distinct triangular numbers.
12 is a term as it is not a sum of 1, 3, 6 or 10 taken at most once.
		

References

  • Joe Roberts, Lure of the Integers, The Mathematical Association of America, 1992, page 184, entry 33.
  • David Wells in "The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, page 94, states that "33 is the largest number that is not the sum of distinct triangular numbers".

Crossrefs

Cf. A025524 (number of numbers not the sum of distinct n-th-order polygonal numbers)
Cf. A007419 (largest number not the sum of distinct n-th-order polygonal numbers)
Cf. A001422, A121405 (corresponding sequences for square and pentagonal numbers)

Programs

  • Mathematica
    nn=100; t=Rest[CoefficientList[Series[Product[(1+x^(k*(k+1)/2)), {k,nn}], {x,0,nn(nn+1)/2}], x]]; Flatten[Position[t,0]] (* T. D. Noe, Jul 24 2006 *)

Formula

Complement of A061208.

Extensions

Entry revised by N. J. A. Sloane, Jul 23 2006

A307598 Number of partitions of n into 3 distinct positive triangular numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 0, 4, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 3, 2, 0, 4, 1, 1, 5, 1, 3, 2, 2, 3, 2, 2, 1, 4, 1, 2, 4, 2, 2, 3, 2, 1, 3, 2, 4, 3, 3, 2, 2, 3, 1, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2019

Keywords

Comments

The greedy inverse starts 0, 10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, ... - R. J. Mathar, Apr 28 2020

Examples

			a(19) = 2 because we have [15, 3, 1] and [10, 6, 3].
		

Crossrefs

Formula

a(n) = [x^n y^3] Product_{k>=1} (1 + y*x^(k*(k+1)/2)).

A117048 Prime numbers that are expressible as the sum of two positive triangular numbers.

Original entry on oeis.org

2, 7, 11, 13, 29, 31, 37, 43, 61, 67, 73, 79, 83, 97, 101, 127, 137, 139, 151, 157, 163, 181, 191, 193, 199, 211, 227, 241, 263, 277, 281, 307, 331, 353, 367, 373, 379, 389, 409, 421, 433, 443, 461, 463, 487, 499, 541, 571, 577, 587, 601, 619, 631, 659, 661
Offset: 1

Views

Author

Andrew S. Plewe, Apr 15 2006

Keywords

Comments

If the triangular number 0 is allowed, only one additional prime occurs: 3. In that case, the sequence becomes A117112.
A subsequence of A051533. - Wolfdieter Lang, Jan 11 2017

Examples

			2 = 1 + 1
7 = 1 + 6
11 = 1 + 10
13 = 10 + 3, etc.
		

Crossrefs

Programs

  • Mathematica
    tri = Table[n (n + 1)/2, {n, 40}]; Select[Union[Flatten[Outer[Plus, tri, tri]]], # <= tri[[-1]]+1 && PrimeQ[#] &] (* T. D. Noe, Apr 07 2011 *)
  • PARI
    is(n)=for(k=sqrtint(4*n+1)\2+1,(sqrtint(8*n+1)-1)\2, if(ispolygonal(n-k*(k+1)/2,3), return(n>3 && isprime(n)))); n==2 \\ Charles R Greathouse IV, Nov 07 2014

A002243 Numbers that are not the sum of 3 distinct triangular numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 12, 15, 20, 23, 33, 78
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Complement[Range[100],Union[Total/@Subsets[Accumulate[Range[0,12]], {3}]]] (* Harvey P. Dale, Sep 02 2014 *)
  • PARI
    is(n)=for(c=ceil((sqrt(24*n-15)+3)/6),(sqrt(8*n-7)-1)/2,my(t=n-c*(c+1)/2);for(b=sqrtint(t-1)+1,min((sqrt(8*n+1)-1)/2,c-1), if(ispolygonal(t-b*(b+1)/2,3), return(0))));1
    select(is,[1..100]) \\ Charles R Greathouse IV, Nov 25 2014
Showing 1-4 of 4 results.