A066614 Erroneous version of A053614.
2, 5, 8, 12, 20, 23, 33
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
nn=50; t=Rest[CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x]]; Flatten[Position[t,0]] (* T. D. Noe, Jul 24 2006 *)
select( is_A001422(n,m=n)={m^2>n&& m=sqrtint(n); n!=m^2&&!while(m>1,isSumOfSquares(n-m^2,m--)&&return)}, [1..128]) \\ M. F. Hasler, Apr 21 2020
57 is the smallest number that can be represented by exactly 6 different triangular triple sums: {6, 6, 5}, {7, 7, 1}, {8, 5, 3}, {8, 6, 0}, {9, 3, 3}, {10, 1, 1}.
a = Table[ n(n + 1)/2, {n, 0, 85} ]; b = {0}; c = Table[0, {3655} ]; Do[ b = Append[b, a[[i] ] + a[[j]] + a[[k]]], {k, 1, 85}, {j, 1, k}, {i, 1, j} ]; b = Delete[b, 1]; b = Sort[b]; l = Length[b]; Do[ If[b[[n]] < 3655, c[[b[[n]] + 1]]++ ], {n, 1, l} ]; Do[ k = 1; While[ c[[k]] != n, k++ ]; Print[k - 1], {n, 1, 48} ]
trig[n_]:=n(n+1)/2; trigInv[x_]:=Ceiling[Sqrt[Max[0, 2x]]]; lim=100; nLst=Table[0, {trig[lim]}]; Do[n=trig[a]+trig[b]+trig[c]; If[n>0 && n<=trig[lim], nLst[[n]]++ ], {a, 0, lim}, {b, a, trigInv[trig[lim]-trig[a]]}, {c, b, trigInv[trig[lim]-trig[a]-trig[b]]}]; Flatten[Position[nLst, 1]] (* T. D. Noe, Aug 10 2005 *)
2 = 1 + 1 7 = 1 + 6 11 = 1 + 10 13 = 10 + 3, etc.
tri = Table[n (n + 1)/2, {n, 40}]; Select[Union[Flatten[Outer[Plus, tri, tri]]], # <= tri[[-1]]+1 && PrimeQ[#] &] (* T. D. Noe, Apr 07 2011 *)
is(n)=for(k=sqrtint(4*n+1)\2+1,(sqrtint(8*n+1)-1)\2, if(ispolygonal(n-k*(k+1)/2,3), return(n>3 && isprime(n)))); n==2 \\ Charles R Greathouse IV, Nov 07 2014
g:= (n, s)-> `if`(n in s or not issqr(8*n+1), 0, 1): b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s), `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t}) , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o)) end: a:= n-> b(n, 0$2, {}): seq(a(n), n=0..40);
g[n_, s_] := If[MemberQ[s, n] || !IntegerQ@Sqrt[8*n + 1], 0, 1]; b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s], If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}], {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz *)
25 = 1 + 3 + 6 + 15
gf := product(1+x^(j*(j+1)/2), j=1..100): s := series(gf, x, 200): for i from 1 to 200 do if coeff(s, x, i) > 0 then printf(`%d,`,i) fi:od:
nn=50; a=Table[n(3n-1)/2,{n,nn}]; t=Rest[CoefficientList[Series[Product[(1+x^a[[k]]), {k, nn}], {x,0,a[[ -1]]}], x]]; Flatten[Position[t,0]]
Comments