cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050529 Primes of the form 11*2^k + 1.

Original entry on oeis.org

23, 89, 353, 1409, 5767169, 23068673, 96757023244289, 26596368031521841843535873, 467888254516290387262140085218681290753, 1871553018065161549048560340874725163009, 9050275065266633231852330504065427777405047260984689248417349633
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 1999

Keywords

Crossrefs

For more terms see A002261.
Cf. A083683.

Programs

  • Mathematica
    Select[11*2^Range[210]+1,PrimeQ] (* Harvey P. Dale, Jun 15 2017 *)

Formula

a(n) = A083683(A002261(n)). - Elmo R. Oliveira, May 04 2025

A001772 Numbers k such that 11*2^k - 1 is prime.

Original entry on oeis.org

2, 26, 50, 54, 126, 134, 246, 354, 362, 950, 1310, 2498, 6926, 11826, 31734, 67850, 74726, 96150, 374114, 696438, 743322, 1044086, 1104606, 1261478
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A050525.
Cf. A002261 (11*2^k+1 is prime).

Programs

  • PARI
    is(n)=ispseudoprime(11*2^n-1) \\ Charles R Greathouse IV, Feb 20 2017
    
  • Python
    from sympy import isprime
    def aupto(lim): return [k for k in range(1, lim+1) if isprime(11*2**k - 1)]
    print(aupto(2500)) # Michael S. Branicky, Feb 26 2021

Extensions

More terms from Hugo Pfoertner, Jun 23 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

A322302 Primes p such that 11*2^p + 1 is also prime.

Original entry on oeis.org

3, 5, 7, 19, 43, 127, 211, 15329, 28277, 3771821
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2018

Keywords

Comments

Primes in A002261.

Crossrefs

Programs

  • GAP
    Filtered([1..1000], p -> IsPrime(p) and IsPrime(11*2^p+1)); # Muniru A Asiru, Dec 20 2018
  • Magma
    [p: p in PrimesUpTo (6000) | IsPrime(11*2^p+1)];
    
  • Maple
    select(p->isprime(p) and isprime(11*2^p+1),[$1..1000]); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[11 2^# + 1] &]

Extensions

a(10) from Joerg Arndt Dec 20 2018

A361076 Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 1, 4, 7, 6, 16, 1, 2, 6, 13, 8, 32, 2, 3, 3, 14, 15, 12, 64, 1, 8, 5, 6, 20, 25, 18, 128, 3, 2, 10, 7, 7, 26, 39, 30, 256, 6, 15, 4, 20, 19, 11, 50, 55, 36, 512, 1, 10, 27, 9, 28, 21, 14, 52, 75, 41, 1024, 1, 4, 46, 51, 10, 82, 43, 17, 92, 85, 66, 2048
Offset: 1

Views

Author

Keywords

Comments

Is a(n) <= A279709(n)?

Examples

			Table starts
  1   2   4   8  16  32  64 128 ... A000079
  1   2   5   6   8  12  18  30 ... A002253
  1   3   7  13  15  25  39  55 ... A002254
  2   4   6  14  20  26  50  52 ... A032353
  1   2   3   6   7  11  14  17 ... A002256
  1   3   5   7  19  21  43  81 ... A002261
  2   8  10  20  28  82 188 308 ... A032356
  1   2   4   9  10  12  27  37 ... A002258
  ...
(2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
		

Crossrefs

Programs

  • PARI
    vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
    lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023
Showing 1-4 of 4 results.