cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002327 Primes of the form k^2 - k - 1.

Original entry on oeis.org

5, 11, 19, 29, 41, 71, 89, 109, 131, 181, 239, 271, 379, 419, 461, 599, 701, 811, 929, 991, 1259, 1481, 1559, 1721, 1979, 2069, 2161, 2351, 2549, 2861, 2969, 3079, 3191, 3539, 3659, 4159, 4289, 4421, 4691, 4969, 5851, 6971, 7309, 7481, 8009, 8741, 8929
Offset: 1

Views

Author

Keywords

Comments

Also primes of form x*y + x + y or x*y - x - y, where x and y are two successive numbers. - Giovanni Teofilatto, May 12 2004
Equivalently primes p such that 4p+5 is square. - Giovanni Teofilatto, Sep 03 2005
Arithmetic numbers which are triangular, A003601(p)=A000217(k), p prime. sigma_1(p)/sigma_0(p) = k*(k+1)/2; sigma_r(p) divisor function, p prime, k integer. - Ctibor O. Zizka, Jul 14 2008
Also primes of the form k^2 + 3k + 1 (primes in A028387). - Zak Seidov, Apr 13 2014
Also primes p such that the sum of divisors (A000203) of p is oblong (A002378). - Michel Marcus, Jan 09 2015

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Tavole di Numeri Primi Entro Limiti Diversi e Tavole Affini, Milan, 1920, p. 249.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002327 n = a002327_list !! (n-1)
    a002327_list = filter ((== 1) .  a010051') a028387_list
    -- Reinhard Zumkeller, Jul 17 2014
  • Magma
    [ a: n in [0..150] | IsPrime(a) where a is n^2 - n - 1 ]; // Vincenzo Librandi, Aug 01 2011
    
  • Maple
    A002327:=n->`if`(isprime(n^2-n-1), n^2-n-1, NULL): seq(A002327(n), n=1..100); # Wesley Ivan Hurt, Aug 09 2014
  • Mathematica
    Select[Table[n^2-n-1,{n,100}],PrimeQ] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    for(n=2,1e3,if(isprime(k=n^2-n-1),print1(k", "))) \\ Charles R Greathouse IV, Jul 31 2011
    
  • PARI
    list(lim)=my(v=List(),p); forstep(n=5,sqrtint(4*lim+5),2, if(isprime(p=(n^2-5)/4), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Oct 10 2023
    

Formula

a(n) = A002328(n)^2 - A002328(n) - 1 = (A110013(n) - 5)/4. - Ray Chandler, Sep 07 2005
a(n) >> n^2 log n by Brun's sieve. - Charles R Greathouse IV, Oct 10 2023

Extensions

Extended by Ray Chandler, Sep 07 2005