A002445 Denominators of Bernoulli numbers B_{2n}.
1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0
Examples
B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- See A000367 for further references and links (there are a lot).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Amelia Bucur, José Luis López-Bonilla, and Jaime Robles-García, A note on the Namias identity for Bernoulli numbers, Journal of Scientific Research (Banaras Hindu University, Varanasi), Vol. 56 (2012), 117-120.
- Suyuong Choi and Younghan Yoon, A decomposition of graph a-numbers, arXiv:2508.06855 [math.CO], 2025. See p. 13.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3
- Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide Numata, Polynomial Expressions of Carries in p-ary Arithmetics, arXiv preprint arXiv:1506.02742 [math.CO], 2015.
- Takao Komatsu, Florian Luca, and Claudio de J. Pita Ruiz V. , A note on the denominators of Bernoulli numbers, Proc. Japan Acad., 90, Ser. A (2014), p. 71-72.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
- Hong-Mei Liu, Shu-Hua Qi, and Shu-Yan Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS 13 (2010) # 10.3.8.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
- Niels Erik Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- Simon Plouffe, The First 498 Bernoulli numbers [Project Gutenberg Etext]
- Jan W. H. Swanepoel, A Short Simple Probabilistic Proof of a Well Known Identity and the Derivation of Related New Identities Involving the Bernoulli Numbers and the Euler Numbers, Integers (2025) Vol. 25, Art. No. A50. See p. 2.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Magma
[Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
-
Maple
A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011 # Alternative N:= 1000: # to get a(0) to a(N) A:= Vector(N,2): for p in select(isprime,[seq(2*i+1,i=1..N)]) do r:= (p-1)/2; for n from r to N by r do A[n]:= A[n]*p od od: 1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
-
Mathematica
Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
-
PARI
a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
-
PARI
A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
-
PARI
a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
-
Sage
def A002445(n): if n == 0: return 1 M = (i + 1 for i in divisors(2 * n)) return prod(s for s in M if is_prime(s)) [A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016
Formula
E.g.f: x/(exp(x) - 1); take denominators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k=1..inf} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/ (2*Pi)^(2*n).
If n>=3 is prime,then a((n+1)/2)==(-1)^((n-1)/2)*12*|A000367((n+1)/2)|(mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = denominator(-I*(2*n)!/(Pi*(1-2*n))*integral(log(1-1/t)^(1-2*n) dt, t=0..1)). - Gerry Martens, May 17 2011
a(n) = 2*denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 28 2012
a(n) = gcd(2!S(2n+1,2),...,(2n+1)!S(2n+1,2n+1)). Here S(n,k) is the Stirling number of the second kind. See the paper of Komatsu et al. - Istvan Mezo, May 12 2016
Comments