cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002445 Denominators of Bernoulli numbers B_{2n}.

Original entry on oeis.org

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Row products of A138239. - Mats Granvik, Mar 08 2008
Equals row products of even rows in triangle A143343. In triangle A080092, row products = denominators of B1, B2, B4, B6, ... . - Gary W. Adamson, Aug 09 2008
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is shown in A028246. - Gary W. Adamson, Aug 09 2008
There is a relation between the Euler numbers E_n and the Bernoulli numbers B_{2*n}, for n>0, namely, B_{2*n} = A000367(n)/a(n) = ((-1)^n/(2*(1-2^{2*n}))) * Sum_{k = 0..n-1} (-1)^k*2^{2*k}*C(2*n,2*k)*A000364(n-k)*A000367(k)/a(k). (See Bucur, et al.) - L. Edson Jeffery, Sep 17 2012
a(n) is the product of all primes of the form (k + n)/(k - n). - Thomas Ordowski, Jul 24 2025

Examples

			B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • See A000367 for further references and links (there are a lot).

Crossrefs

Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
B_n gives A027641/A027642. See A027641 for full list of references, links, formulas, etc.
Cf. A160014 for a generalization.

Programs

  • Magma
    [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011
    # Alternative
    N:= 1000: # to get a(0) to a(N)
    A:= Vector(N,2):
    for p in select(isprime,[seq(2*i+1,i=1..N)]) do
      r:= (p-1)/2;
      for n from r to N by r do
        A[n]:= A[n]*p
      od
    od:
    1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
  • Mathematica
    Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
    
  • PARI
    A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
    
  • PARI
    a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
    
  • Sage
    def A002445(n):
        if n == 0:
            return 1
        M = (i + 1 for i in divisors(2 * n))
        return prod(s for s in M if is_prime(s))
    [A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016

Formula

E.g.f: x/(exp(x) - 1); take denominators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k=1..inf} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/ (2*Pi)^(2*n).
If n>=3 is prime,then a((n+1)/2)==(-1)^((n-1)/2)*12*|A000367((n+1)/2)|(mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = denominator(-I*(2*n)!/(Pi*(1-2*n))*integral(log(1-1/t)^(1-2*n) dt, t=0..1)). - Gerry Martens, May 17 2011
a(n) = 2*denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 28 2012
a(n) = gcd(2!S(2n+1,2),...,(2n+1)!S(2n+1,2n+1)). Here S(n,k) is the Stirling number of the second kind. See the paper of Komatsu et al. - Istvan Mezo, May 12 2016
a(n) = 2*A001897(n) = A027642(2*n) = 3*A277087(n) for n>0. - Jonathan Sondow, Dec 14 2016