cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002513 Number of "cubic partitions" of n: expansion of Product_{k>0} 1/((1-x^(2k))^2*(1-x^(2k-1))) in powers of x.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 23, 31, 54, 73, 118, 159, 246, 329, 489, 651, 940, 1242, 1751, 2298, 3177, 4142, 5630, 7293, 9776, 12584, 16659, 21320, 27922, 35532, 46092, 58342, 75039, 94503, 120615, 151173, 191611, 239060, 301086, 374026, 468342, 579408, 721638, 889287
Offset: 0

Views

Author

Keywords

Comments

For a real polynomial equation of degree n, a(n) is the number of possibilities for the roots to be real and unequal, real and equal (in various combinations), or simple or multiple complex conjugates. For example, a(3)=4 because we can have: three equal roots, two equal roots, three distinct real roots and two complex roots (see the Monthly Problem reference). - Emeric Deutsch, Mar 22 2005
Number of partitions of n, the even parts being of two kinds. E.g. a(4)=9 because we have 4, 4', 3+1, 2+2, 2+2', 2'+2', 2+1+1, 2'+1+1, 1+1+1+1. - Emeric Deutsch, Mar 22 2005
For the name "cubic partition" see Xiong; Chen & Lin; Chern & Dastidar. - Michel Marcus, Jan 28 2016

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 23*x^6 + 31*x^7 + 54*x^8 + 73*x^9 + ...
G.f. = 1/q + q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 23*q^47 + 31*q^55 + 54*q^63 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0930 and N0931).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N:= 50: # to get a(0) to a(N)
    P:= mul((1-x^(2*k))^(-2)*(1-x^(2*k-1))^(-1),k=1..ceil(N/2)):
    S:= series(P, x, N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 26 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, d, 2*d), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 05 2020
  • Mathematica
    max = 50; f[x_] := Product[ 1/((1-x^(2 k))^2*(1-x^(2k-1))), {k, 1, Ceiling[max/2]} ]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 04 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q] / QPochhammer[ q^2], {q, 0, n}];(* Michael Somos, Jul 17 2013 *)
    Table[Sum[PartitionsP[k]*PartitionsP[n-2k],{k,0,n/2}],{n,0,50}] (* Vaclav Kotesovec, Jun 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A) / eta(x^2 + A), n))}; /* Michael Somos, Nov 10 2005 */
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 2)
    a = EulerTransform(b)
    print([a(n) for n in range(44)]) # Peter Luschny, Nov 17 2022

Formula

From Michael Somos, Mar 23 2003: (Start)
Expansion of q^(1/8) / (eta(q) * eta(q^2)) in powers of q.
Euler transform of period 2 sequence [1, 2, ...].
G.f.: Product_{k>0} 1/((1 - x^(2*k))^2 * (1 - x^(2*k-1))).
(End)
Given g.f. A(x), then B(q) = A(q)^8 / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 16*v^4 + v^3*w + 256*u*v^3 + 16*u*v^2*w - u^2*w^2. - Michael Somos, Apr 03 2005
a(n) ~ exp(Pi*sqrt(n)) / (8*n^(5/4)) * (1 - (Pi/16 + 15/(8*Pi))/sqrt(n)). - Vaclav Kotesovec, Jun 22 2015, extended Jan 17 2017
From Michel Marcus, Jan 28 2016: (Start)
G.f.: Product_{k>0} 1/((1 - x^k) * (1 - x^(2*k))).
a(3n+2) = 0 (mod 3).
a(25n+22) = 0 (mod 5) (see Xiong).
a(49n+15) = a(49n+29) = a(49n+36) = a(49n+43) = 0 (mod 7) (see Chen & Lin).
a(297n+62) = a(297n+161) = 0 (mod 11) (see Chern & Dastidar).
(End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(-7/2) (t/i)^-1 f(t) where q = exp(2 Pi i t). - Michael Somos, Oct 17 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018
From Peter Bala, Sep 25 2023: (Start)
The g.f. A(x) satisfies log(A(x)) = x + 5*x^2/2 + 4*x^3/3 + 13*x^4/4 + ... = Sum_{n >= 1} A215947(n)*x^n/n.
A(x^2) = 4/(F(x)*F(-x)) = 2/(F(x)*G(-x)), where F(x) = Sum_{n = -oo..oo} x^(n*(n+1)/2) is the g.f. of A089799 and G(x) = Sum_{n = -oo..oo} x^(n^2) is the g.f. of A000122. Cf. A001934. Note that 4/(F(-x)*F(-x)) is the g.f. of A273225.
The self-convolution A(x)^2 is the g.f. of A319455. (End)

Extensions

More terms and information from Michael Somos, Mar 23 2003