A002532 a(n) = 2*a(n-1) + 5*a(n-2), a(0) = 0, a(1) = 1.
0, 1, 2, 9, 28, 101, 342, 1189, 4088, 14121, 48682, 167969, 579348, 1998541, 6893822, 23780349, 82029808, 282961361, 976071762, 3366950329, 11614259468, 40063270581, 138197838502, 476712029909, 1644413252328, 5672386654201, 19566839570042, 67495612411089
Offset: 0
Examples
G.f. = x + 2*x^2 + 9*x^3 + 28*x^4 + 101*x^5 + 342*x^6 + 1189*x^7 + ...
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Albert Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12 [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,5).
Crossrefs
Programs
-
Magma
[Floor(((1+Sqrt(6))^n-(1-Sqrt(6))^n)/(2*Sqrt(6))): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
Magma
[n le 2 select n-1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
-
Maple
A002532:=-z/(-1+2*z+5*z**2); # Conjectured by Simon Plouffe in his 1992 dissertation # second program seq(simplify(2^(n-1) * hypergeom([1 - (1/2)*n, 1/2 - (1/2)*n], [1 - n], -5)), n = 2..25); # Peter Bala, Jul 06 2025
-
Mathematica
Expand[Table[((1 + Sqrt[6])^n - (1 - Sqrt[6])^n)/(2Sqrt[6]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *) a[n_]:=(MatrixPower[{{1,2},{1,-3}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{2,5},{0,1},30] (* Harvey P. Dale, Nov 03 2011 *)
-
PARI
Vec(1/(1-2*x-5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Apr 17 2012
-
Sage
from sage.combinat.sloane_functions import recur_gen2; it = recur_gen2(0,1,2,5); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
-
Sage
[lucas_number1(n,2,-5) for n in range(0, 26)] # Zerinvary Lajos, Apr 22 2009
Formula
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 5*a(n)^2 + a(n+1)^2.
From Paul Barry, Sep 20 2003: (Start)
G.f.: x/(1-2*x-5*x^2).
E.g.f.: exp(x)*sinh(sqrt(6)*x)/sqrt(6).
a(n) = ((1+sqrt(6))^n - (1-sqrt(6))^n)/(2*sqrt(6)). (End)
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*6^k. - Paul Barry, Sep 29 2004
G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
From Peter Bala, Jul 06 2025: (Start)
For n >= 0, a(n+1) = (2^n) * Sum_{k = 0..floor(n/2)} binomial(n-k, k) * (5/4)^k.
For n >= 2, a(n) = 2^(n-1) * hypergeom([1 - (1/2)*n, 1/2 - (1/2)*n], [1 - n], -5).
Sum_{n >= 1} (-5)^n/(a(n)*a(n+1)) = -(sqrt(6) - 1).
Sum_{n >= 1} 5^n/(a(n)*a(n+2)) = 5/4; Sum_{n >= 1} 5^n/(a(n)*a(n+4)) = 755/7056.
G.f. A(x) = x*exp(Sum_{n >= 1} a(2*n)/a(n)*x^n/n) = x + 2*x^2 + 9*x^3 + 28*x^4 + .... (End)
Extensions
More terms from Rick L. Shepherd, Sep 19 2004
Comments