cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002534 a(n) = 2*a(n-1) + 9*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 13, 44, 205, 806, 3457, 14168, 59449, 246410, 1027861, 4273412, 17797573, 74055854, 308289865, 1283082416, 5340773617, 22229288978, 92525540509, 385114681820, 1602959228221, 6671950592822, 27770534239633, 115588623814664
Offset: 0

Views

Author

Keywords

Comments

For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 2's along the main diagonal, and 3's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

Programs

  • Magma
    [Ceiling(((1+Sqrt(10))^n-(1-Sqrt(10))^n)/(2*Sqrt(10))): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    A002534:=-z/(-1+2*z+9*z**2); # [Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    LinearRecurrence[{2, 9}, {0, 1}, 30] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    first(n) = Vec(x/(1 - 2*x - 9*x^2) + O(x^n), -n) \\ Iain Fox, Jan 17 2018
  • Sage
    [lucas_number1(n,2,-9) for n in range(0, 20)] # Zerinvary Lajos, Apr 22 2009
    

Formula

From Paul Barry, Sep 29 2004: (Start)
E.g.f.: exp(x)*sinh(sqrt(10)*x)/sqrt(10).
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*10^k. (End)
a(n) = ((1+sqrt(10))^n - (1-sqrt(10))^n)/(2*sqrt(10)). - Artur Jasinski, Dec 10 2006
G.f.: x/(1 - 2*x - 9*x^2) - Iain Fox, Jan 17 2018
From G. C. Greubel, Jan 03 2024: (Start)
a(n) = (3*i)^(n-1)*ChebyshevU(n-1, -i/3).
a(n) = 3^(n-1)*Fibonacci(n, 2/3), where Fibonacci(n, x) is the Fibonacci polynomial. (End)

Extensions

More terms from Johannes W. Meijer, Aug 18 2011