cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A002535 a(n) = 2*a(n-1) + 9*a(n-2), with a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 11, 31, 161, 601, 2651, 10711, 45281, 186961, 781451, 3245551, 13524161, 56258281, 234234011, 974792551, 4057691201, 16888515361, 70296251531, 292589141311, 1217844546401, 5068991364601, 21098583646811, 87818089575031, 365523431971361, 1521409670118001, 6332530227978251
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 0, 10, 0, 100, 0, 1000, 0, 10000, 0, ...]=: powers of 10 (A011557) with interpolated zeros. Inverse binomial transform of A084132. - Philippe Deléham, Dec 02 2008
a(n) is the number of compositions of n when there are 1 type of 1 and 10 types of other natural numbers. - Milan Janjic, Aug 13 2010

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

Cf. A002534 (partial sums), A111015 (primes).

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+9*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
  • Magma
    [Ceiling((1+Sqrt(10))^n/2+(1-Sqrt(10))^n/2): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+9*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
    
  • Maple
    A002535:=(-1+z)/(-1+2*z+9*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[ MatrixPower[{{1, 2}, {5, 1}}, n][[1,1]],{n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    a[n_] := Simplify[((1 + Sqrt[10])^n + (1 - Sqrt[10])^n)/2]; Array[a, 30, 0] (* Or *)
    CoefficientList[Series[(1+9x)/(1-2x-9x^2), {x,0,30}], x] (* Or *)
    LinearRecurrence[{2, 9}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-9*x^2)) \\ G. C. Greubel, Aug 02 2019
    
  • PARI
    my(p=Mod('x,'x^2-2*'x-9)); a(n) = vecsum(Vec(lift((p^n)))); \\ Kevin Ryde, Jan 28 2023
    
  • Sage
    ((1-x)/(1-2*x-9*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
    

Formula

From Paul Barry, May 16 2003: (Start)
a(n) = ((1+sqrt(10))^n + (1-sqrt(10))^n)/2.
G.f.: (1-x)/(1-2*x-9*x^2).
E.g.f.: exp(x)*cosh(sqrt(10)*x). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*10^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=10,(i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A [i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A123004 Expansion of g.f. x^2/(1 - 2*x - 25*x^2).

Original entry on oeis.org

0, 1, 2, 29, 108, 941, 4582, 32689, 179928, 1177081, 6852362, 43131749, 257572548, 1593438821, 9626191342, 59088353209, 358831489968, 2194871810161, 13360530869522, 81592856993069, 497198985724188, 3034219396275101
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-2)*ChebyshevU(n-2, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), this sequence (m=5), A123005 (m=7), A123006 (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) +25*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -25*x^2), {x,0,40}], x]
    Join[{a=0,b=1},Table[c=2*b+25*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
  • Sage
    [(5*i)^(n-2)*chebyshev_U(n-2, -i/5) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 25*a(n-2).
a(n+1) = ((1+sqrt(26))^n - (1-sqrt(26))^n)/(2*sqrt(26)). - Rolf Pleisch, Jul 06 2009
a(n) = (5*i)^(n-2)*ChebyshevU(n-2, -i/5). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010

A123005 Expansion of g.f. x^2/(1-2*x-49*x^2).

Original entry on oeis.org

0, 1, 2, 53, 204, 3005, 16006, 179257, 1142808, 11069209, 78136010, 698663261, 5225991012, 44686481813, 345446523214, 2880530655265, 22687940948016, 186521884004017, 1484752874460818, 12109078065118469, 96971046978817020
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-1)*ChebyshevU(n-1, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), A123004 (m=5), this sequence (m=7), A123006 (m=11).

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) -49*Self(n-2): n in [1..31]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    CoefficientList[Series[x^2/(1-2x-49x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 12 2020 *)
  • Sage
    [(7*i)^(n-2)*chebyshev_U(n-2, -i/7) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 49*a(n-2).
a(n) = (7*i)^(n-2)*ChebyshevU(n-2, -i/7). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A123006 Expansion of x^2/(1 -2*x -121*x^2).

Original entry on oeis.org

0, 1, 2, 125, 492, 16109, 91750, 2132689, 15367128, 288789625, 2437001738, 39817548101, 374512306500, 5566947933221, 56449884952942, 786500469825625, 8403437018957232, 111973430886815089, 1240762741067455250
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

Crossrefs

Sequences of the form (m*i)^(n-1)*ChebyshevU(n-1, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), A123004 (m=5), A123005 (m=7), this sequence (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) + 121*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -121*x^2), {x,0,30}], x]
  • Sage
    [(11*i)^(n-2)*chebyshev_U(n-2, -i/11) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 121*a(n-2).
a(n) = (11*i)^(n-2)*ChebyshevU(n-2, -i/11). - G. C. Greubel, Jul 12 2021

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A147518 Expansion of (1-x)/(1-4*x-6*x^2).

Original entry on oeis.org

1, 3, 18, 90, 468, 2412, 12456, 64296, 331920, 1713456, 8845344, 45662112, 235720512, 1216854720, 6281741952, 32428096128, 167402836224, 864179921664, 4461136704000, 23029626345984, 118885325607936, 613719060507648
Offset: 0

Views

Author

Philippe Deléham, Nov 06 2008

Keywords

Comments

Binomial transform of [1,2,13,44,205,...] = A002534(n+1).
a(n) is the number of compositions of n when there are 3 types of 1 and 9 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • GAP
    a:=[1,3];; for n in [3..30] do a[n]:=4*a[n-1]+6*a[n-2]; od; a; # G. C. Greubel, Jan 09 2020
  • Magma
    I:=[1,3]; [n le 2 select I[n] else 4*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 09 2020
    
  • Maple
    seq(coeff(series((1-x)/(1-4*x-6*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 09 2020
  • Mathematica
    CoefficientList[Series[(1-x)/(1-4x-6x^2),{x,0,30}],x] (* or *) LinearRecurrence[{4,6},{1,3},30] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-4*x-6*x^2)) \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    def A147518_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-4*x-6*x^2) ).list()
    A147518_list(30) # G. C. Greubel, Jan 09 2020
    

Formula

a(n) = 4*a(n-1) + 6*a(n-2) with a(0)=1, a(1)=3.
a(n) = Sum_{k=0..n} A122016(n,k)*3^k.
a(n) = ((10+sqrt(10))/20)*(2+sqrt(10))^n + ((10-sqrt(10))/20)*(2-sqrt(10))^n. - Richard Choulet, Nov 20 2008
Showing 1-10 of 20 results. Next