1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
1, 0
1, 1, 0
1, 3, 0, 0
1, 6, 1, 0, 0
1, 10, 5, 0, 0, 0
1, 15, 15, 1, 0, 0, 0
1, 21, 35, 7, 0, 0, 0, 0
1, 28, 70, 28, 1, 0, 0, 0, 0
A084132
a(n) = 4*a(n-1) + 6*a(n-2), a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 14, 68, 356, 1832, 9464, 48848, 252176, 1301792, 6720224, 34691648, 179087936, 924501632, 4772534144, 24637146368, 127183790336, 656558039552, 3389334900224, 17496687838208, 90322760754176, 466271170045952
Offset: 0
-
[n le 2 select 2^(n-1) else 4*Self(n-1) +6*Self(n-2): n in [1..40]]; // G. C. Greubel, Oct 13 2022
-
LinearRecurrence[{4,6}, {1,2}, 40] (* G. C. Greubel, Oct 13 2022 *)
-
[lucas_number2(n,4,-6)/2 for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
-
A084132=BinaryRecurrenceSequence(4,6,1,2)
[A084132(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
A084097
Square array whose rows have e.g.f. exp(x)*cosh(sqrt(k)*x), k>=0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 8, 1, 1, 1, 5, 10, 17, 16, 1, 1, 1, 6, 13, 28, 41, 32, 1, 1, 1, 7, 16, 41, 76, 99, 64, 1, 1, 1, 8, 19, 56, 121, 208, 239, 128, 1, 1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1, 1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1
Offset: 0
Array, A(n,k), begins:
.n\k.........0..1...2...3....4.....5......6......7.......8........9.......10
.0: A000012..1..1...1...1....1.....1......1......1.......1........1........1
.1: A000079..1..1...2...4....8....16.....32.....64.....128......256......512
.2: A001333..1..1...3...7...17....41.....99....239.....577.....1393.....3363
.3: A026150..1..1...4..10...28....76....208....568....1552.....4240....11584
.4: A046717..1..1...5..13...41...121....365...1093....3281.....9841....29525
.5: A084057..1..1...6..16...56...176....576...1856....6016....19456....62976
.6: A002533..1..1...7..19...73...241....847...2899...10033....34561...119287
.7: A083098..1..1...8..22...92...316...1184...4264...15632....56848...207488
.8: A084058..1..1...9..25..113...401...1593...5993...23137....88225...338409
.9: A003665..1..1..10..28..136...496...2080...8128...32896...130816...524800
10: A002535..1..1..11..31..161...601...2651..10711...45281...186961...781451
11: A133294..1..1..12..34..188...716...3312..13784...60688...259216..1125312
12: A090042..1..1..13..37..217...841...4069..17389...79537...350353..1575613
13: A125816..1..1..14..40..248...976...4928..21568..102272...463360..2153984
14: A133343..1..1..15..43..281..1121...5895..26363..129361...601441..2884575
15: A133345..1..1..16..46..316..1276...6976..31816..161296...768016..3794176
16: A120612..1..1..17..49..353..1441...8177..37969..198593...966721..4912337
17: A133356..1..1..18..52..392..1616...9504..44864..241792..1201408..6271488
18: A125818..1..1..19..55..433..1801..10963..52543..291457..1476145..7907059
25: A083578
- _Robert G. Wilson v_, Jan 02 2013
Antidiagonal triangle, T(n,k), begins:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 4, 1;
1, 1, 4, 7, 8, 1;
1, 1, 5, 10, 17, 16, 1;
1, 1, 6, 13, 28, 41, 32, 1;
1, 1, 7, 16, 41, 76, 99, 64, 1;
1, 1, 8, 19, 56, 121, 208, 239, 128, 1;
1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1;
1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1;
Rows:
A000012,
A000079,
A001333,
A026150,
A046717,
A084057,
A002533,
A083098,
A084058,
A003665,
-
function A084097(n,k)
if k eq 0 then return 1;
else return k*2^(k-1)*(&+[ Binomial(k-j,j)*((n-k-1)/4)^j/(k-j): j in [0..Floor(k/2)]]);
end if; return A084097; end function;
[A084097(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 15 2022
-
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; T[1, 0] = 1; Table[ T[j - k, k], {j, 0, 11}, {k, 0, j}] // Flatten (* Robert G. Wilson v, Jan 02 2013 *)
-
def A084097(n,k):
if (k==0): return 1
else: return k*2^(k-1)*sum( binomial(k-j,j)*((n-k-1)/4)^j/(k-j) for j in range( (k+2)//2 ) )
flatten([[A084097(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 15 2022
A160444
Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).
Original entry on oeis.org
0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1
Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Beinert, Villardscher Teilungskanon, Lexikon der Typographie
- W. Limbrunner, Das Quadrat, ein Wunder der Geometrie. (in German)
- Willibald Limbrunner, Family of sequences for k
- M-T. Zenner, Villard de Honnecourt and Euclidean Geoometry, Nexus Network Journal 4 (2002) 65-78.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,2).
-
I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
-
LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
-
@CachedFunction
def a(n): # a = A160444
if (n<5): return ((n+1)//3)
else: return 2*(a(n-2) + a(n-4))
[a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023
A292848
a(n) is the smallest prime of form (1/2)*((1 + sqrt(2*n))^k + (1 - sqrt(2*n))^k).
Original entry on oeis.org
3, 5, 7, 113, 11, 13, 43, 17, 19, 61, 23, 73, 79, 29, 31, 97, 103, 37, 1241463763, 41, 43, 664973, 47, 2593, 151, 53, 163, 14972833, 59, 61, 4217, 193, 67, 23801, 71, 73, 223, 229, 79, 241, 83, 7561, 61068909859, 89, 271, 277, 283, 97, 10193, 101, 103, 313
Offset: 1
For k = {1, 2, 3, 4}, (1/2)((1 + sqrt(8))^k + (1 - sqrt(8))^k) = {1, 9, 25, 113}. 113 is prime, so a(4) = 113.
Cf.
A001333,
A026150,
A046717,
A084057,
A002533,
A083098,
A083100,
A003665,
A002535,
A133294,
A090042,
A125816,
A133343,
A133345,
A120612,
A133356,
A125818.
-
f:= proc(n) local a,b,t;
a:= 1; b:= 1;
do
t:= a; a:= 2*a + (2*n-1)*b;
if isprime(a) then return a fi;
b:= t;
od
end proc:
map(f, [$1..100]); # Robert Israel, Sep 26 2017
-
f[n_, k_] := ((1 + Sqrt[n])^k + (1 - Sqrt[n])^k)/2;
Table[k = 1; While[! PrimeQ[Expand@f[2n, k]], k++]; Expand@f[2n, k], {n, 52}]
Comments