cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005667 Numerators of continued fraction convergents to sqrt(10).

Original entry on oeis.org

1, 3, 19, 117, 721, 4443, 27379, 168717, 1039681, 6406803, 39480499, 243289797, 1499219281, 9238605483, 56930852179, 350823718557, 2161873163521, 13322062699683, 82094249361619, 505887558869397, 3117419602578001, 19210405174337403, 118379850648602419
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A005668(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = -1, a(2*n) with b(2*n) := A005668(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = +1 (cf. Emerson reference).
Bisection: a(2*n) = T(n,19) = A078986(n), n >= 0 and a(2*n+1) = 3*S(2*n, 2*sqrt(10)), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
The initial 1 corresponds to a denominator 0 in A005668. But according to standard conventions, a continued fraction starts with b(0) = integer part of the number, and the sequence of convergents p(n)/q(n) start with (p(0),q(0)) = (b(0),1). A fraction 1/0 has no mathematical meaning, the only justification is that initial terms p(-1) = 1, q(-1) = 0 are consistent with the recurrent relations p(n) = b(n)*p(n-1) + b(n-2) and the same for q(n). - M. F. Hasler, Nov 02 2019

Examples

			G.f. = 1 + 3*x + 19*x^2 + 117*x^3 + 721*x^4 + 4443*x^5 + 27379*x^6 + ... - _Michael Somos_, Jul 14 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010467, A040006, A084134, A005668 (denominators).

Programs

  • Magma
    I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A005667:=(-1+3*z)/(-1+6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1},Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[10],n]]],{n,1,30}]] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[(1-3x)/(1-6x-x^2), {x,0,30}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Join[{1},Numerator[Convergents[Sqrt[10],30]]] (* or *) LinearRecurrence[ {6,1},{1,3},30] (* Harvey P. Dale, Aug 22 2016 *)
    a[ n_] := (-I)^n ChebyshevT[ n, 3 I]; (* Michael Somos, Jul 14 2018 *)
    LucasL[Range[0,30], 6]/2 (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    a(n)=([0,1;1,6]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    ((1-3*x)/(1-6*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019

Formula

a(n) = 6*a(n-1) + a(n-2).
G.f.: (1-3*x)/(1-6*x-x^2).
a(n) = ((-i)^n)*T(n, 3*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1.
From Paul Barry, Nov 15 2003: (Start)
Binomial transform of A084132.
E.g.f.: exp(3*x)*cosh(sqrt(10)*x).
a(n) = ((3+sqrt(10))^n + (3-sqrt(10))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k) * 10^k * 3^(n-2*k). (End)
a(n) = (-1)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018 [This refers to the sequence extended to negative indices according to the recurrence relation, but not to the sequence as it is currently defined. - M. F. Hasler, Nov 02 2019]
a(n) = Lucas(n,6)/2, Lucas polynomial, L(n,x), evaluated at x = 6. - G. C. Greubel, Jun 06 2019

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A201730 Triangle T(n,k), read by rows, given by (2,1/2,3/2,0,0,0,0,0,0,0,...) DELTA (0,1/2,-1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2011

Keywords

Comments

Riordan array ((1-2x)/(1-4x+3x^2),x^2/(1-4x+3x^2)).
A007318*A201701 as lower triangular matrices.

Examples

			Triangle begins:
1
2, 0
5, 1, 0
14, 6, 0, 0
41, 26, 1, 0, 0
122, 100, 10, 0, 0, 0
365, 363, 63, 1, 0, 0, 0
		

Crossrefs

Cf. A007051 (1st column), A261064 (2nd column).

Programs

  • Maple
    A201730 := proc(n,k)
        (1-2*x)/(1-4*x+(3-y)*x^2) ;
        coeftayl(%,y=0,k) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(seq(A201730(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{2, 1/2, 3/2}, Table[0, {m}]], Join[{0, 1/2, -1/2}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)

Formula

G.f.: (1-2x)/(1-4x+(3-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A139011(n), A000079(n), A007051(n), A006012(n), A001075(n), A081294(n), A001077(n), A084059(n), A108851(n), A084128(n), A081340(n), A084132(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k, k>+0} T(n+k,k) = A081704(n) .
T(n,k) = 3*T(n-1,k)+ Sum_{j>0} T(n-1-j,k-1).
T(n,k) = 4*T(n-1,k)+ T(n-2,k-1) - 3*T(n-2,k) with T(0,0)=1, T(1,0)= 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if n

A002535 a(n) = 2*a(n-1) + 9*a(n-2), with a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 11, 31, 161, 601, 2651, 10711, 45281, 186961, 781451, 3245551, 13524161, 56258281, 234234011, 974792551, 4057691201, 16888515361, 70296251531, 292589141311, 1217844546401, 5068991364601, 21098583646811, 87818089575031, 365523431971361, 1521409670118001, 6332530227978251
Offset: 0

Keywords

Comments

Binomial transform of [1, 0, 10, 0, 100, 0, 1000, 0, 10000, 0, ...]=: powers of 10 (A011557) with interpolated zeros. Inverse binomial transform of A084132. - Philippe Deléham, Dec 02 2008
a(n) is the number of compositions of n when there are 1 type of 1 and 10 types of other natural numbers. - Milan Janjic, Aug 13 2010

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

Cf. A002534 (partial sums), A111015 (primes).

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+9*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
  • Magma
    [Ceiling((1+Sqrt(10))^n/2+(1-Sqrt(10))^n/2): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+9*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
    
  • Maple
    A002535:=(-1+z)/(-1+2*z+9*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[ MatrixPower[{{1, 2}, {5, 1}}, n][[1,1]],{n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    a[n_] := Simplify[((1 + Sqrt[10])^n + (1 - Sqrt[10])^n)/2]; Array[a, 30, 0] (* Or *)
    CoefficientList[Series[(1+9x)/(1-2x-9x^2), {x,0,30}], x] (* Or *)
    LinearRecurrence[{2, 9}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-9*x^2)) \\ G. C. Greubel, Aug 02 2019
    
  • PARI
    my(p=Mod('x,'x^2-2*'x-9)); a(n) = vecsum(Vec(lift((p^n)))); \\ Kevin Ryde, Jan 28 2023
    
  • Sage
    ((1-x)/(1-2*x-9*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
    

Formula

From Paul Barry, May 16 2003: (Start)
a(n) = ((1+sqrt(10))^n + (1-sqrt(10))^n)/2.
G.f.: (1-x)/(1-2*x-9*x^2).
E.g.f.: exp(x)*cosh(sqrt(10)*x). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*10^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=10,(i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A [i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
Showing 1-3 of 3 results.