A075324 Independent domination number for queens' graph Q(n).
1, 1, 1, 3, 3, 4, 4, 5, 5, 5, 5, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 16, 16, 17
Offset: 1
Examples
a(8) = 5 queens attacking all squares of standard chessboard: . . . . . . . . . . . . . Q . . . . Q . . . . . . . . . Q . . . . . . . . . Q . . . . Q . . . . . . . . . . . . . . . . . . . .
References
- W. W. R. Ball and H. S. M. Coxeter, Math'l Rec. and Essays, 13th Ed. Dover, p. 173.
- C. Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 304, Example 2.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 49.
Links
- William Herbert Bird, Computational methods for domination problems, University of Victoria, 2017. See Table 5.1 on p. 114.
- Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
- Alexis Langlois-Rémillard, Christoph Müßig, and Érika Róldan, Complexity of Chess Domination Problems, arXiv:2211.05651 [math.CO], 2022.
- Alexis Langlois-Rémillard, Christoph Müßig, and Érika Róldan, Solution a(26)-a(31) and Julia code to compute the sequence, 2022.
Extensions
a(19)-a(24) from Bird and a(25) from Kearse & Gibbons added by Andrey Zabolotskiy, Sep 03 2021
a(26) from Alexis Langlois-Rémillard, Christoph Müßig and Érika Roldán added by Christoph Muessig, Aug 25 2022
a(27)-a(31) from Alexis Langlois-Rémillard, Christoph Müßig and Érika Roldán added by Christoph Muessig, Sep 19 2022
Comments