cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002727 Number of 3 X n binary matrices up to row and column permutations.

Original entry on oeis.org

1, 4, 13, 36, 87, 190, 386, 734, 1324, 2284, 3790, 6080, 9473, 14378, 21323, 30974, 44159, 61898, 85440, 116286, 156240, 207446, 272432, 354162, 456097, 582238, 737205, 926298, 1155567, 1431892, 1763074, 2157904, 2626276, 3179278, 3829294, 4590118, 5477081
Offset: 0

Views

Author

Keywords

Comments

Also, number of unlabeled bipartite graphs with three left vertices and n right vertices. - Yavuz Oruc, Jan 22 2018

Examples

			G.f. = 1 + 4*x + 13*x^2 + 36*x^3 + 87*x^4 + 190*x^5 + 386*x^6 + 734*x^7 + ...
		

References

  • A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

  • Magma
    I:=[1,4,13,36,87,190,386,734,1324,2284,3790,6080,9473, 14378]; [n le 14 select I[n] else 4*Self(n-1)-4*Self(n-2)-2*Self(n-3)+2*Self(n-4)+4*Self(n-5)+3*Self(n-6)-12*Self(n-7)+ 3*Self(n-8)+4*Self(n-9)+2*Self(n-10)-2*Self(n-11)-4*Self(n-12)+4*Self(n-13)-Self(n-14): n in [1..50]]; // Vincenzo Librandi, Oct 13 2015
    
  • Mathematica
    CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x)^4(1-x^2)^2(1-x^3)^2),{x,0,40}],x] (* or *) LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,13,36,87,190,386,734,1324,2284,3790,6080,9473,14378},41] (* Harvey P. Dale, Nov 10 2011 *)
    Table[Which[
    Mod[n, 3] == 0,
    1/6 (1/27 (54 + 45 n + 12 n^2 + n^3) + 1/320 (4 + n) *(225 + 15 (-1)^n + 352 n + 172 n^2 + 32 n^3 + 2 n^4) + Binomial[7 + n, 7]),
    Mod[n, 3] == 1,
    1/6 (1/27 (50 + 45 n + 12 n^2 + n^3) + 1/320 (4 + n) *(225 + 15 (-1)^n + 352 n + 172 n^2 + 32 n^3 + 2 n^4) + Binomial[7 + n, 7]),
    Mod[n, 3] == 2,
    1/6 (1/27 (28 + 39 n + 12 n^2 + n^3) + 1/320 (4 + n) *(225 + 15 (-1)^n + 352 n + 172 n^2 + 32 n^3 + 2 n^4) + Binomial[7 + n, 7])
    ], {n, 0, 100}] (* Yavuz Oruc, Jan 22 2018 *)
  • PARI
    {a(n) = (6*n^7 + 168*n^6 + 2121*n^5 + 15540*n^4 + 70084*n^3 + 190512*n^2 + n*[284544, 281709, 277824, 281709, 284544, 274989][n%6+1]) \ 181440 + 1}; /* Michael Somos, Aug 22 2016 */
    
  • PARI
    x='x+O('x^99); Vec((1+x^2+2*x^3+x^4+x^6)/((1-x)^2*((1-x)*(1-x^2)*(1-x^3))^2)) \\ Altug Alkan, Mar 03 2018
    
  • PARI
    Vec(G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

G.f.: (x^6+x^4+2*x^3+x^2+1)/((1-x)^4*(1-x^2)^2*(1-x^3)^2). - Vladeta Jovovic, Feb 04 2000.
a(0)=1, a(1)=4, a(2)=13, a(3)=36, a(4)=87, a(5)=190, a(6)=386, a(7)=734, a(8)=1324, a(9)=2284, a(10)=3790, a(11)=6080, a(12)=9473, a(13)=14378. For n>13, a(n)=4*a(n-1)-4*a(n-2)-2*a(n-3)+2*a(n-4)+4*a(n-5)+3*a(n-6)- 12*a(n-7)+ 3*a(n-8)+4*a(n-9)+2*a(n-10)-2*a(n-11)-4*a(n-12)+4*a(n-13)-a(n-14). - Harvey P. Dale, Nov 10 2011
a(n) = -a(-8 - n) for all n in Z. - Michael Somos, Aug 22 2016
From Yavuz Oruc, Jan 22 2018: (Start)
If n == 0 (mod 3) then a(n)=(1/6)*(binomial(n+7,7) + (3(n+4)(2n^4 + 32n^3 + 172n^2 + 352n + 15(-1)^n + 225))/960 + (2(n^3 + 12n^2 + 45n + 54))/54).
If n == 1 (mod 3) then a(n)=(1/6)*(binomial(n+7,7) + (3(n+4)(2n^4 + 32n^3 + 172n^2 + 352n + 15(-1)^n + 225))/960 + (2(n^3 + 12n^2 + 45n + 50))/54).
If n == 2 (mod 3) then a(n)=(1/6)*(binomial(n+7,7) + (3(n+4)(2n^4 + 32n^3 + 172n^2 + 352n + 15(-1)^n + 225))/960 + (2(n^3 + 12n^2 + 39n + 28))/54). (End)

Extensions

More terms from Vladeta Jovovic, Feb 04 2000
Definition corrected by Max Alekseyev, Feb 05 2010