A192680
Floor-Sqrt transform of Sylvester continuants (A002801).
Original entry on oeis.org
1, 1, 1, 2, 7, 20, 65, 232, 883, 3581, 15383, 69579, 329769, 1631137, 8391824, 44777342, 247182082, 1408611456, 8270902948, 49953724226, 309870713560, 1971523962002, 12849924998486, 85702472618249, 584305721381119, 4068533850711783, 28907888594859403
Offset: 0
-
FSFromExpSeries[f_,x_,n_] := Map[Floor[Sqrt[#]]&,CoefficientList[Series[f,{x,0,n}],x]Table[k!,{k,0,n}]]
FSFromExpSeries[Exp[x/2]/(1-2x)^(1/4),x,40]
A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A383313
Expansion of e.g.f. exp(-x/2) / (1-2*x)^(1/4).
Original entry on oeis.org
1, 0, 1, 4, 27, 232, 2455, 30852, 449113, 7432624, 137829249, 2830911220, 63796168579, 1565078980536, 41521403685463, 1184510408920468, 36158133322895985, 1176012432875399008, 40599110984252798017, 1482736219224857910756, 57115359439245403771051
Offset: 0
A002370
a(n) = (2*n-1)^2 * a(n-1) - 3*C(2*n-1,3) * a(n-2) for n>1; a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 6, 120, 5250, 395010, 45197460, 7299452160, 1580682203100, 441926274289500, 154940341854097800, 66565404923242024800, 34389901168124209507800, 21034386936107260971255000, 15032296693671903309613950000, 12411582569784462888618434640000
Offset: 0
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5.
- I. M. H. Etherington, Some problems of non-associative combinations, Edinburgh Math. Notes, 32 (1940), 1-6.
- T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 282.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..225
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5. [Annotated scanned copy]
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923, Vol. 2.
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923. [Annotated scans of selected pages] See Vol. 3, page 282.
- Wikipedia, Skew-symmetric matrix
-
a:= proc(n) option remember;
`if`(n<2, 1, (2*n-1)^2 * a(n-1) -3*binomial(2*n-1, 3) *a(n-2))
end:
seq(a(n), n=0..20);
-
a[n_] := Gamma[n+1/2]*HypergeometricPFQ[{1/4, -n}, {}, -4]/Sqrt[Pi]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 17 2014, after Mark van Hoeij *)
-
x='x+O('x^50); v=Vec( (1-x)^(-1/4)*exp(x/4) );
vector(#v,n, v[n]*(2*n-2)! ) \\ Joerg Arndt, Jan 21 2011
A247249
a(n) = (2*n-1)*a(n-1) + (n-1)*a(n-2) with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 4, 22, 166, 1582, 18232, 246508, 3825244, 67001212, 1307450224, 28126466824, 661290689416, 16869784837288, 464080969569184, 13694525105228368, 431491492805617168, 14458331664269020432, 513376963627111206976, 19255197624159957025888
Offset: 0
G.f. = 1 + x + 4*x^2 + 22*x^3 + 166*x^4 + 1582*x^5 + 18232*x^6 + ...
-
I:=[1,4]; [1] cat [n le 2 select I[n] else (2*n-1)*Self(n-1) + (n-1)*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2018
-
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {3/4, -n}, {}, 4] / (-2)^n];
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[-x/2] (1 - 2 x)^(-3/4), {x, 0, n}]];
a[ n_] := If[ n < 0, 0, n! / (-2)^n Sum[ (-4)^k Binomial[ k - 1/4, k] / (n - k)!, {k, 0, n}]];
a[ n_] := If[ n < 0, 0, RecurrenceTable[ {a[k] == (2 k - 1) a[k + 1] + (k - 1) a[k], a[0] == a[1] == 1}, a, {k, n, n}]];
nxt[{n_,a_,b_}]:={n+1,b,(2n+1)b+a n}; NestList[nxt,{1,1,1},20][[All,2]] (* Harvey P. Dale, Jan 16 2023 *)
-
{a(n) = if( n<0, 0, n! / (-2)^n * sum(k=0, n, (-4)^k * binomial(k - 1/4, k) / (n-k)!))};
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( exp(-x / 2 + A) * (1 - 2*x + A)^(-3/4), n))};
A152148
Riordan array [exp(-x/2)(1-2x)^(-1/4),x].
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 27, 16, 6, 0, 1, 232, 135, 40, 10, 0, 1, 2455, 1392, 405, 80, 15, 0, 1, 30852, 17185, 4872, 945, 140, 21, 0, 1, 449113, 246816, 68740, 12992, 1890, 224, 28, 0, 1, 7432624, 4042017, 1110672, 206220
Offset: 0
Triangle begins
1,
0, 1,
1, 0, 1,
4, 3, 0, 1,
27, 16, 6, 0, 1,
232, 135, 40, 10, 0, 1,
2455, 1392, 405, 80, 15, 0, 1
The production matrix of this array begins
0, 1,
1, 0, 1,
4, 2, 0, 1,
24, 12, 3, 0, 1,
192, 96, 24, 4, 0, 1;
1920, 960, 240, 40, 5, 1
and has e.g.f. exp(x*t)(t+1/(1-2x)).
A381505
Expansion of e.g.f. exp(2*x/3) / (1-3*x)^(1/9).
Original entry on oeis.org
1, 1, 2, 10, 88, 1064, 16144, 293968, 6241280, 151328512, 4124855296, 124843943936, 4153947277312, 150699794606080, 5919989155033088, 250339939417452544, 11338037538551824384, 547552961327680913408, 28087260712728645468160, 1525087432592278987866112
Offset: 0
A381506
Expansion of e.g.f. exp(3*x/4) / (1-4*x)^(1/16).
Original entry on oeis.org
1, 1, 2, 12, 138, 2202, 44172, 1064664, 29947644, 962720316, 34812065304, 1398413067984, 61779789904248, 2976866834860728, 155364530441352912, 8730749828092965408, 525584335643810008848, 33743905825099188235536, 2301524700814009677800736
Offset: 0
A383316
Expansion of e.g.f. exp(x/2) / (1-4*x)^(1/8).
Original entry on oeis.org
1, 1, 3, 23, 281, 4593, 93643, 2285959, 64981809, 2107824353, 76819828499, 3107456481399, 138145505435977, 6694550810809297, 351219409831557339, 19832058937696108007, 1199219012904515868257, 77314609952787255980481, 5293934640303567123132451
Offset: 0
A383317
Expansion of e.g.f. exp(x/2) / (1-6*x)^(1/12).
Original entry on oeis.org
1, 1, 4, 46, 838, 20398, 619768, 22564252, 957247708, 46363595644, 2524152072304, 152582368541224, 10139721673875976, 734706716925462184, 57646381491830349472, 4869084744694710293392, 440492624600086270972432, 42494068518463022190243088, 4354423933547086885775444032
Offset: 0
Showing 1-10 of 10 results.
Comments