A002866 a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.
1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280, 1857945600, 40874803200, 980995276800, 25505877196800, 714164561510400, 21424936845312000, 685597979049984000, 23310331287699456000, 839171926357180416000, 31888533201572855808000, 1275541328062914232320000
Offset: 0
Examples
For the shoe lacing: with the notation introduced in A078602 the a(3-1) = 4 "straight" lacings for 3 pairs of eyelets are: 125346, 125436, 134526, 143526. Their mirror images 134256, 143256, 152346, 152436 are not counted. a(3) = 24 because the 24 rotations of a three-dimensional cube fall into four distinct classes: (i) the identity, which leaves everything fixed; (ii) 9 rotations which leave the centers of two faces fixed, comprising rotations of 90, 180 and 270 degrees for each of 3 pairs of faces; (iii) 6 rotations which leave the centers of two edges fixed, comprising rotations of 180 degrees for each of 6 pairs of edges; (iv) 8 rotations which leave two vertices fixed, comprising rotations of 120 and 240 degrees for each of 4 pairs of vertices. For an n-cube, rotations can be more complex. For example, in 4 dimensions a rotation can either act in a single plane, such as the x-y plane, while leaving any vectors orthogonal to that plane unchanged, or it can act in two orthogonal planes, performing rotations in both and leaving no vectors fixed. In higher dimensions, there will be room for more planes and more choices as to the number of planes in which a given rotation acts.
References
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6, p. 257.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.26)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Ofek Lauber Bonomo and Shlomi Reuveni, Occupancy correlations in the asymmetric simple inclusion process, arXiv:1905.02170 [cond-mat.stat-mech], 2019.
- J.-P. Bultel and A. Chouria, J.-G. Luque and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, Accepted to FPSAC 2013, 2013; arXiv:1302.5815 [math.CO], 2013.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. 3 (2000), #00.1.5.
- Greg Egan, Hypercube Mathematical Details, 2007-2008.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: 2013 45th Southeastern Symposium on System Theory (SSST).
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 121.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- OEIS Wiki, Sorting numbers.
- Hugo Pfoertner, Counting straight shoe lacings. FORTRAN program and results.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2007.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
- Index to divisibility sequences
- Index entries for sequences related to shoe lacings
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
FORTRAN
See Pfoertner link.
-
Magma
[1] cat [2^(n-1)*Factorial(n): n in [1..25]]; // G. C. Greubel, Jun 13 2019
-
Maple
A002866 := n-> `if`(n=0,1,2^(n-1)*n!): with(combstruct); SeqSeqL := [S, {S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled]; seq(ceil(count(Subset(n))*count(Permutation(n))/2),n=0..17); # Zerinvary Lajos, Oct 16 2006 G(x):=(1-x)/(1-2*x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..17); # Zerinvary Lajos, Apr 04 2009
-
Mathematica
Join[{1},Table[2^(n-1) n!,{n,25}]] (* Harvey P. Dale, Sep 27 2013 *) a[n_] := (-1)^n Hypergeometric2F1Regularized[1, -n, 2 - n, 2]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 26 2024 *)
-
PARI
a(n)=if(n,n!<<(n-1),1) \\ Charles R Greathouse IV, Jan 13 2012
-
PARI
a(n) = if(n == 0, 1, 2^(n-1)*n!); vector(25, n, a(n-1)) \\ Altug Alkan, Oct 18 2015
-
Sage
[1] + [2^(n-1)*factorial(n) for n in (1..25)] # G. C. Greubel, Jun 13 2019
Formula
E.g.f.: (1 - x)/(1 - 2*x). - Paul Barry, May 26 2003, corrected Jun 18 2007
a(n) = n! * A011782(n).
For n >= 1, a(n) = Sum_{i=0..m/2} (-1)^i * binomial(n, i) * (n-2*i)^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) ~ 2^(1/2) * Pi^(1/2) * n^(3/2) * 2^n * e^(-n) * n^n*{1 + 13/12*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
E.g.f. is B(A(x)), where B(x) = 1/(1 - x) and A(x) = x/(1 - x). - Geoffrey Critzer, Mar 16 2009
a(n) = Sum_{k=1..n} A156992(n,k). - Dennis P. Walsh, Nov 26 2011
a(n+1) = Sum_{k=0..n} A132393(n,k)*2^(n+k), n>0. - Philippe Deléham, Nov 28 2011
G.f.: 1 + x/(1 - 4*x/(1 - 2*x/(1 - 6*x/(1 - 4*x/(1 - 8*x/(1 - 6*x/(1 - 10*x/(1 - ... (continued fraction). - Philippe Deléham, Nov 29 2011
a(n) = 2*n*a(n-1) for n >= 2. - Dennis P. Walsh, Nov 29 2011
G.f.: (1 + 1/G(0))/2, where G(k) = 1 + 2*x*k - 2*x*(k + 1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
G.f.: 1 + x/Q(0), m=4, where Q(k) = 1 - m*x*(2*k + 1) - m*x^2*(2*k + 1)*(2*k + 2)/(1 - m*x*(2*k + 2) - m*x^2*(2*k + 2)*(2*k + 3)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
G.f.: 1 + x/(G(0) - x), where G(k) = 1 + x*(k+1) - 4*x*(k + 1)/(1 - x*(k + 2)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = Sum_{k=0..n} L(n,k)*k!; L(n,k) are the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = round(Sum_{k >= 1} log(k)^n/k^(3/2))/4, for n >= 1, which is related to the n-th derivative of zeta(x) evaluated at x = 3/2. - Richard R. Forberg, Jan 02 2015
a(n) = n!*hypergeom([-n+1], [], -1) for n>=1. - Peter Luschny, Apr 08 2015
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n >= 0} 1/a(n) = 2*sqrt(e) - 1.
Sum_{n >= 0} (-1)^n/a(n) = 2/sqrt(e) - 1. (End)
Comments