A002961 Numbers k such that k and k+1 have same sum of divisors.
14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 109214, 111506, 116937, 122073, 138237, 147454, 161001, 162602, 166934
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- R. K. Guy, Unsolved Problems in Theory of Numbers, Sect. B13.
- W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10135 (terms < 10^13; first 4804 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Jonathan Bayless and Paul Kinlaw, On repeated values of sigma and multiperfect numbers, Journal of Combinatorics and Number Theory, Vol. 7, No. 3 (2015), pp. 177-189.
- Lourdes Benito, Solutions of the problem of Erdős-Sierpiński: sigma(n)=sigma(n+1), arXiv:0707.2190 [math.NT], 2007.
- Richard Guy and Daniel Shanks, A Constructed Solution of sigma(n) = sigma(n+1), The Fibonacci Quarterly, Volume 12, Number 3, October 1974, 299.
- A. Makowski, On Some Equations Involving Functions phi(n) and sigma(n), The American Mathematical Monthly, Vol. 67, No. 7 (Aug. - Sep., 1960), pp. 668-670.
- N. J. A. Sloane & D. Singmaster, Correspondence 1972.
- Andreas Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a002961 n = a002961_list !! (n-1) a002961_list = map (+ 1) $ elemIndices 0 a053222_list -- Reinhard Zumkeller, Dec 28 2011
-
Mathematica
Flatten[Position[Partition[DivisorSigma[1,Range[170000]],2,1],{x_,x_}]] (* Harvey P. Dale, Aug 08 2011 *) SequencePosition[DivisorSigma[1,Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2018 *)
-
PARI
t1=sigma(1);for(n=2,1e6,t2=sigma(n);if(t2==t1,print1(n-1", "));t1=t2) \\ Charles R Greathouse IV, Jul 15 2011
Formula
Sum_{n>=1} 1/a(n) is in the interval (0.080958, 610837) (Bayless and Kinlaw, 2015). - Amiram Eldar, Oct 15 2020
Extensions
More terms from Jud McCranie, Oct 15 1997
Comments