cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003068 Problimes (third definition).

Original entry on oeis.org

2, 4, 7, 11, 15, 19, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a[1] := 2: for i from 1 to 150 do a[i+1] := ceil(a[i]+1/product((1-1/a[j]), j=1..i)): od: # James Sellers, Mar 07 2000
  • Mathematica
    a[1] = 2; a[n_] := a[n] = Ceiling[a[n-1] + 1/Product[1 - 1/a[j], {j, 1, n-1}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 18 2013 *)

Extensions

More terms from James Sellers, Mar 07 2000

A003067 Problimes (second definition).

Original entry on oeis.org

2, 4, 7, 10, 13, 17, 21, 25, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319
Offset: 1

Views

Author

Keywords

Comments

It would be nice to have a clearer definition. - N. J. A. Sloane, Jul 21 2008
The g.f. (z**2+2+z**9+z**5)/(z-1)**2 conjectured by Simon Plouffe in his 1992 dissertation is wrong.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a[1] := 2: for i from 1 to 150 do a[i+1] := round(a[i]+1/product((1-1/a[j]), j=1..i)): od: # James Sellers, Mar 07 2000
  • Mathematica
    a[1] = 2; a[n_] := a[n] = Round[a[n-1] + 1/Product[1-1/a[j], {j, 1, n-1}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 09 2012, after James Sellers *)

Extensions

More terms from James Sellers, Mar 07 2000

A178899 Numbers which are both primes and problimes (third definition).

Original entry on oeis.org

2, 7, 11, 19, 23, 43, 53, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 1873, 1999, 2017, 2053, 2089, 2143, 2161, 2179, 2251, 2269, 2287, 2341, 2377, 2467, 2503, 2521, 2539, 2557, 2593, 2647, 2683, 2719, 2791, 2917, 2953, 2971, 3061, 3079
Offset: 1

Views

Author

Jonathan Vos Post, Dec 29 2010

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local k;
          if n=1 then c(2):= 1; 2
                 else k:= ceil(b(n-1) +1/mul((1-1/b(j)), j=1..n-1));
                      c(k):= n; k
          fi
        end:
    a:= proc(n) option remember; local k;
          if n=1 then b(1)
                 else for k from c(a(n-1))+1 while not isprime(b(k))
                      do od; b(k)
          fi
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 29 2010
  • Mathematica
    nmax = 400;
    b[n_] := b[n] = If[n==1, 2, Ceiling[b[n-1]+1/Product[1-1/b[j], {j, 1, n-1}]]];
    Intersection[Array[b, nmax], Prime[Range[PrimePi[b[nmax]]]]] (* Jean-François Alcover, Nov 20 2020 *)

Formula

A000040 INTERSECTION A003068.

Extensions

More terms from Alois P. Heinz, Dec 29 2010
Showing 1-3 of 3 results.