cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A178532 Partial sums of problimes (third definition, A003068).

Original entry on oeis.org

2, 6, 13, 24, 39, 58, 81, 109, 142, 180, 223, 271, 324, 382, 445, 513, 586, 665, 750, 841, 938, 1041, 1150, 1265, 1386, 1513, 1646, 1785, 1930, 2081, 2238, 2401, 2570, 2745, 2926, 3113, 3306, 3505, 3710, 3921, 4138, 4362, 4593, 4831, 5076
Offset: 1

Views

Author

Jonathan Vos Post, Dec 28 2010

Keywords

Comments

The subsequence of prime partial sums of problimes begins: 2, 13, 109, 223, 271, 2081, 4831, 8233.
The subsequence of problime partial sums of problimes begins: 2, 58, 109.

Examples

			a(12) = 2 + 4 + 7 + 11 + 15 + 19 + 23 + 28 + 33 + 38 + 43 + 48 = 271 is prime.
		

Crossrefs

Formula

SUM[i=1..n] A003068(i).

A003066 Problimes (first definition).

Original entry on oeis.org

2, 4, 6, 9, 12, 15, 19, 23, 27, 31, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283, 290, 297, 304, 311, 318, 325
Offset: 1

Views

Author

Keywords

Comments

From Dean Hickerson, Jan 13 2003: (Start)
Suppose you have a list of the first n prime numbers p_1, ..., p_n and you want to estimate the next one. The probability that a random integer is not divisible by any of p_1, ..., p_n is (1-1/p_1) * ... * (1-1/p_n). In other words, 1 out of every 1/((1-1/p_1) * ... * (1-1/p_n)) integers is relatively prime to p_1, ..., p_n.
So we might expect the next prime to be roughly this much larger than p_n; i.e. p_(n+1) may be about p_n + 1/((1-1/p_1) * ... * (1-1/p_n)). This sequence and A003067, A003068 are obtained by replacing this approximation by an exact equation, using 3 different ways of making the results integers. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a[1] := 2: for i from 1 to 150 do a[i+1] := floor(a[i]+1/product((1-1/a[j]), j=1..i)): od: # James Sellers, Mar 07 2000
  • Mathematica
    a[1] = 2; a[n_] := a[n] = Floor[a[n-1] + 1/Product[1-1/a[j], {j, 1, n-1}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 09 2012, after James Sellers *)

Extensions

More terms from James Sellers, Mar 07 2000

A003067 Problimes (second definition).

Original entry on oeis.org

2, 4, 7, 10, 13, 17, 21, 25, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319
Offset: 1

Views

Author

Keywords

Comments

It would be nice to have a clearer definition. - N. J. A. Sloane, Jul 21 2008
The g.f. (z**2+2+z**9+z**5)/(z-1)**2 conjectured by Simon Plouffe in his 1992 dissertation is wrong.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a[1] := 2: for i from 1 to 150 do a[i+1] := round(a[i]+1/product((1-1/a[j]), j=1..i)): od: # James Sellers, Mar 07 2000
  • Mathematica
    a[1] = 2; a[n_] := a[n] = Round[a[n-1] + 1/Product[1-1/a[j], {j, 1, n-1}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 09 2012, after James Sellers *)

Extensions

More terms from James Sellers, Mar 07 2000

A062467 Integer part of log(n!)^(1 + log(n)/n).

Original entry on oeis.org

0, 0, 2, 4, 7, 11, 15, 19, 23, 28, 32, 37, 41, 46, 50, 55, 60, 64, 69, 74, 78, 83, 88, 93, 97, 102, 107, 112, 116, 121, 126, 131, 136, 141, 145, 150, 155, 160, 165, 170, 175, 180, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 239, 244, 249, 254, 259
Offset: 1

Views

Author

Olivier Gérard, Jun 23 2001

Keywords

Crossrefs

Cf. A062468, see also A003068.

Programs

  • Mathematica
    Floor[Log[n! ]^(1 + Log[n]/n)]

Formula

a(n) = floor(log(n!)^(1 + log(n)/n)). - Wesley Ivan Hurt, Mar 15 2023

A178899 Numbers which are both primes and problimes (third definition).

Original entry on oeis.org

2, 7, 11, 19, 23, 43, 53, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 1873, 1999, 2017, 2053, 2089, 2143, 2161, 2179, 2251, 2269, 2287, 2341, 2377, 2467, 2503, 2521, 2539, 2557, 2593, 2647, 2683, 2719, 2791, 2917, 2953, 2971, 3061, 3079
Offset: 1

Views

Author

Jonathan Vos Post, Dec 29 2010

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local k;
          if n=1 then c(2):= 1; 2
                 else k:= ceil(b(n-1) +1/mul((1-1/b(j)), j=1..n-1));
                      c(k):= n; k
          fi
        end:
    a:= proc(n) option remember; local k;
          if n=1 then b(1)
                 else for k from c(a(n-1))+1 while not isprime(b(k))
                      do od; b(k)
          fi
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 29 2010
  • Mathematica
    nmax = 400;
    b[n_] := b[n] = If[n==1, 2, Ceiling[b[n-1]+1/Product[1-1/b[j], {j, 1, n-1}]]];
    Intersection[Array[b, nmax], Prime[Range[PrimePi[b[nmax]]]]] (* Jean-François Alcover, Nov 20 2020 *)

Formula

A000040 INTERSECTION A003068.

Extensions

More terms from Alois P. Heinz, Dec 29 2010

A178907 n-th prime + n-th problime (third definition).

Original entry on oeis.org

4, 7, 12, 18, 26, 32, 40, 47, 56, 67, 74, 85, 94, 101, 110, 121, 132, 140, 152, 162, 170, 182, 192, 204, 218, 228, 236, 246, 254, 264, 284, 294, 306, 314, 330, 338, 350, 362, 372, 384, 396, 405, 422, 431, 442, 451, 470, 489, 500, 509, 520, 533, 542, 559, 572, 585, 598, 607, 620, 631, 640, 657, 678
Offset: 1

Views

Author

Jonathan Vos Post, Dec 29 2010

Keywords

Comments

The partial sequence of values which are themselves primes begins: 7, 47, 101. The partial sequence of values which are themselves problimes (third definition) begins: 4, 7, 85, 121.

Examples

			a(10) = prime(10) + A003068(10) = 29 + 38 = 67 is prime.
		

Crossrefs

Formula

a(n) = A000040(n) + A003068(n).

Extensions

Corrected and extended. - R. J. Mathar, Oct 20 2013
Showing 1-6 of 6 results.