A003096 a(n) = a(n-1)^2 - 1, a(0) = 2.
2, 3, 8, 63, 3968, 15745023, 247905749270528, 61457260521381894004129398783, 3776994870793005510047522464634252677140721938309041881088
Offset: 0
References
- R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 49-89.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Mensa, self-test indicative for high IQ
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Programs
-
Magma
[n le 1 select 2 else Self(n-1)^2 -1: n in [1..12]]; // G. C. Greubel, Oct 27 2022
-
Maple
a := proc(n) local k, v: v := 2: for k from 1 to n do v := v^2-1: od: v: end: seq(a(n), n = 0 .. 8); # Lorenzo Sauras Altuzarra, Feb 01 2023
-
Mathematica
NestList[#^2-1&,2,10] (* Harvey P. Dale, Nov 06 2011 *)
-
PARI
a(n)=if(n<1,2*(n==0),a(n-1)^2-1)
-
SageMath
def A003096(n): return 2 if (n==0) else A003096(n-1)^2 -1 [A003096(n) for n in range(12)] # G. C. Greubel, Oct 27 2022
Formula
a(n-1) = ceiling(c^(2^n)) where c = 1.295553... = A077124. - Benoit Cloitre, Nov 29 2002
Comments