cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003096 a(n) = a(n-1)^2 - 1, a(0) = 2.

Original entry on oeis.org

2, 3, 8, 63, 3968, 15745023, 247905749270528, 61457260521381894004129398783, 3776994870793005510047522464634252677140721938309041881088
Offset: 0

Views

Author

Keywords

Comments

After a(0) = 2 and a(1) = 3, this can never be prime, since a(n) = (a(n-1) + 1) * (a(n-1) - 1). Each term is relatively prime to its successor. - Jonathan Vos Post, Jun 06 2008
Mensa (see Dutch link below) indicates high intelligence by offering a self test containing a number of problems, one of which is "Complete each series with the element that logically continues the series: 3968, 63, 8, 3". - David A. Corneth, May 19 2024

References

  • R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 49-89.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2 -1: n in [1..12]]; // G. C. Greubel, Oct 27 2022
    
  • Maple
    a := proc(n) local k, v: v := 2: for k from 1 to n do v := v^2-1: od: v: end:
    seq(a(n), n = 0 .. 8); # Lorenzo Sauras Altuzarra, Feb 01 2023
  • Mathematica
    NestList[#^2-1&,2,10] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    a(n)=if(n<1,2*(n==0),a(n-1)^2-1)
    
  • SageMath
    def A003096(n): return 2 if (n==0) else A003096(n-1)^2 -1
    [A003096(n) for n in range(12)] # G. C. Greubel, Oct 27 2022

Formula

a(n-1) = ceiling(c^(2^n)) where c = 1.295553... = A077124. - Benoit Cloitre, Nov 29 2002