cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A077124 Decimal expansion of the constant c such that A003096(n-1) = ceiling(c^(2^n)).

Original entry on oeis.org

1, 2, 9, 5, 5, 5, 3, 5, 3, 6, 1, 8, 6, 5, 3, 2, 5, 4, 1, 3, 9, 8, 1, 5, 5, 9, 7, 0, 0, 5, 9, 3, 3, 5, 3, 9, 4, 7, 7, 6, 8, 6, 5, 3, 6, 0, 0, 1, 5, 4, 4, 6, 2, 6, 4, 9, 8, 1, 8, 7, 0, 1, 0, 3, 4, 9, 7, 3, 6, 8, 9, 3, 9, 5, 4, 5, 4, 0, 5, 6, 4, 6, 4, 5, 4, 9, 3, 9, 1, 3, 4, 1, 1, 1, 2, 3, 7, 0, 7, 2, 1, 2, 4, 4, 9
Offset: 1

Views

Author

Benoit Cloitre, Nov 29 2002

Keywords

Crossrefs

Cf. A003096.

Formula

c = 1.2955535361865325413981559700593353....;
c = lim_{n -> infinity} A003096(n-1)^(1/2^n).

A158984 Coefficients of polynomials (in descending powers of x) P(n,x) := -1 + P(n-1,x)^2, where P(1,x) = x - 1.

Original entry on oeis.org

1, -1, 1, -2, 0, 1, -4, 4, -1, 1, -8, 24, -32, 14, 8, -8, 0, 0, 1, -16, 112, -448, 1116, -1744, 1552, -384, -700, 736, -160, -128, 64, 0, 0, 0, -1, 1, -32, 480, -4480, 29112, -139552, 509600, -1441024, 3166616, -5345344, 6668992, -5473536, 1494624
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Examples

			Row 1: 1 -1 (from x-1)
Row 2: 1 -2 0 (from x^2-2x)
Row 3: 1 -4 4 -1
Row 4: 1 -8 24 -32 14 8 -8 0 0
		

Crossrefs

Programs

  • PARI
    tabf(nn) = {p = x-1; print(Vec(p)); for (n=2, nn, p = -1 + p^2; print(Vec(p)););} \\ Michel Marcus, Mar 01 2016

Formula

From Peter Bala, Jul 01 2015: (Start)
P(n,x) = P(n,2 - x) for n >= 2.
P(n+1,x)= P(n,(x - 1)^2). Thus if alpha is a zero of P(n,x) then sqrt(alpha) + 1 is a zero of P(n+1,x).
Define a sequence of polynomials Q(n,x) by setting Q(1,x) = -1 + x^2 and Q(n,x) = Q(n-1, -1 + x^2) for n >= 2. Then P(n,x) = Q(n,sqrt(x)).
Q(n,x) = Q(k,Q(n-k,x)) for 1 <= k <= n - 1; P(n,x) = P(k,P(n-k,x)^2) for 1 <= k <= n - 1.
P(n,x)^(2^k) divides P(n + 2*k,x) in Z[x] for k = 1,2,....
P(n,4) = A003096(n). (End)

A139244 a(0) = 4; a(n) = a(n-1)^2 - 1.

Original entry on oeis.org

4, 15, 224, 50175, 2517530624, 6337960442777829375, 40169742574216538983356186036612890624, 1613608218478824775913354216413699241125577233045500390244103887844987109375
Offset: 0

Views

Author

Jonathan Vos Post, Jun 06 2008

Keywords

Comments

This is the next analog of A003096 with different initial value a(0), as starting with a(0) = 2 is A003096 and a(0) = 3 is A003096 with first term omitted. It alternates between even and odd values, specifically between 4 mod 10 and 5 mod 10 and is always composite (by difference of squares factorization).
a(n+2) is divisible by a(n)^2. A007814(a(2 n)) = A153893(n). - Robert Israel, Jul 20 2015

Crossrefs

Programs

Formula

a(n-1) = ceiling(c^(2^n)) where c is a constant between 1 and 2.
More specifically, c=1.9668917617901763653335057202... (sequence A260315). - Chayim Lowen, Jul 17 2015

A186750 a(0) = 3; thereafter, a(n) = a(n-1)^2 - 3.

Original entry on oeis.org

3, 6, 33, 1086, 1179393, 1390967848446, 1934791555410494424614913, 3743418362887760317407541271559358491868341997566
Offset: 0

Views

Author

Jonathan Vos Post, Feb 26 2011

Keywords

Comments

This is to A001566 as 3 is to 2 (subtrahend). Unlike A001566, which begins with 4 consecutive primes, this sequence can never be prime after a(0) = 3, because the first two terms are both multiples of 3, hence all later terms are. This is the k = 3 row of the array A(k, 0) = 3, A(k, n) = A(k, n-1)^2 - k; and A001566 is the k = 2 row. A003096(n+1) is the k = 1 row.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[n] == a[n-1]^2 - 3}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
    Drop[Abs[NestList[#^2 - 3 &, 0, 9]], 1] (* Alonso del Arte, Apr 08 2016 *)

Formula

a(n) ~ c^(2^n), where c = 2.3959550115176494685408322564302422183669584045032057908382914927198090627... - Vaclav Kotesovec, Dec 18 2014

A073015 a(n) is such that 2 = sqrt(1+sqrt(1+sqrt(1+....sqrt(a(n))....))) where there are n sqrt's.

Original entry on oeis.org

3, 4, 9, 64, 3969, 15745024, 247905749270529, 61457260521381894004129398784, 3776994870793005510047522464634252677140721938309041881089, 14265690253996672387291309349232388828298289458234016200317876247121873778287073518355813134107244701354409532063744
Offset: 0

Views

Author

Benoit Cloitre, Aug 03 2002

Keywords

Examples

			2 = sqrt(1+sqrt(1+sqrt(64))) hence a(3)=64.
		

References

  • Berndt and Rankin, "Ramanujan, letters and commentary", p. 275
  • Bruce Berndt, "Ramanujan's notebook", part II, Springer Verlag, pp. 107-112

Crossrefs

Cf. A003096.

Programs

  • Haskell
    a073015 n = a073015_list !! n
    a073015_list = iterate (\x -> (x - 1) ^ 2) 3  -- Reinhard Zumkeller, Jul 16 2012
  • Mathematica
    a[0] = 3; a[n_] := a[n] = (a[n-1]-1)^2; Table[ a[n], {n, 0, 9}] (* Jean-François Alcover, Dec 14 2011, after Pari *)
    NestList[(#-1)^2&,3,10] (* Harvey P. Dale, Feb 04 2012 *)
  • PARI
    a(n)=if(n<1,3*(n==0),(a(n-1)-1)^2)
    

Formula

a(n) = A003096(n) + 1.

A186751 a(0) = 3; thereafter, a(n) = a(n-1)^2 - 4.

Original entry on oeis.org

3, 5, 21, 437, 190965, 36467631221, 1329888126870853950837, 1768602429992068534155014726612412013000565
Offset: 0

Views

Author

Jonathan Vos Post, Feb 26 2011

Keywords

Comments

This is to A001566 as 4 is to 2 (subtrahend). This is the k=4 row of the array A[k,0] = 3, A[k,n] = A[k,n-1]^2 - k; A186750 is the k=3 row; and A001566 is the k=2 row. A003096(n+1) is the k=1 row.

Examples

			a(1) = a(0)^2 - 4 = 3^2 - 4 = 5, which is, like a(0), a prime.
		

Crossrefs

Programs

A135378 Main diagonal of "square and add k" array.

Original entry on oeis.org

2, 5, 38, 2707, 21418388, 3000279372337641, 255122481276683701099886061668842
Offset: 0

Views

Author

Jonathan Vos Post, Dec 09 2007

Keywords

Comments

Array of recurrence "start with 2, square and add k" begins:
k..|.A[k,n]=A[k,n-1]^2 + k
-1.|.2..3...8....63.......3968..15745023.247905749270528.............A003096
0..|.2..4..16...256......65536..4294967296.18446744073709551616......A001146
1..|.2..5..26...677.....458330..210066388901.44127887745906175987802.A003095
2..|.2..6..38..1446....2090918.4371938082726...19113842599189892819591078...
3..|.2..7..52..2707....7327852.53697414933907..2883412370584178505178284652.
4..|.2..8..68..4628...21418388.458747344518548.210449126102819371741916028308.
5..|.2..9..86..7401...54774806.3000279372337641.9001676312074749038996905444886.
6..|.2.10.106.11242..126382570.1597255405035792810...
7..|.2.11.128.16391..268664888.72180822044052551...
8..|.2.12.152.23112..534164552.285331768613360712..
9..|.2.13.178.31693.1004446258.1008912285210202573.
10.|.2.14.206.42446.1801662926.3245989298922881486.

Crossrefs

Programs

  • Mathematica
    A[k_,0] = 2; A[k_,n_] := A[k,n] = A[k, n-1]^2 + k; a[n_] := A[n, n]; a /@ Range[0, 6] (* Giovanni Resta, Jun 20 2016 *)

Formula

a(n) = A[n,n] where A[k,n] = n-th term of recurrence A[k,0] = 2, A[k,n] = A[k,n-1]^2 + k.

Extensions

Corrected and edited by Giovanni Resta, Jun 20 2016
Showing 1-7 of 7 results.