cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003453 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 3, 6, 11, 17, 26, 36, 50, 65, 85, 106, 133, 161, 196, 232, 276, 321, 375, 430, 495, 561, 638, 716, 806, 897, 1001, 1106, 1225, 1345, 1480, 1616, 1768, 1921, 2091, 2262, 2451, 2641, 2850, 3060, 3290, 3521, 3773, 4026
Offset: 5

Views

Author

Keywords

Comments

In other words, the number of 2-dissections of an n-gon modulo the dihedral action.
John W. Layman observes that this appears to be the alternating sum transform (PSumSIGN) of A005744.
Row 2 of the convolution array A213847. - Clark Kimberling, Jul 05 2012
Number of nonisomorphic outer planar graphs of order n >= 3 and size n+2. - Christian Barrientos and Sarah Minion, Feb 27 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A295634.

Programs

  • Maple
    T52:= proc(n)
    if n mod 2 = 0 then (n-4)*(n-2)*(n+3)/24;
    else (n-3)*(n^2-13)/24; fi end;
    [seq(T52(n),n=5..80)]; # N. J. A. Sloane, Dec 28 2012
  • Mathematica
    nd[n_]:=If[EvenQ[n],(n-4)(n-2) (n+3)/24,(n-3) (n^2-13)/24]; Array[nd,50,5] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{1,3,6,11,17,26},50] (* Harvey P. Dale, Jan 28 2013 *)
  • PARI
    \\ See A295419 for DissectionsModDihedral()
    { my(v=DissectionsModDihedral(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017

Formula

G.f.: (1+x-x^2) / ((1-x)^4*(1+x)^2).
See also the Maple code.
a(5)=1, a(6)=3, a(7)=6, a(8)=11, a(9)=17, a(10)=26, a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a (n-6). - Harvey P. Dale, Jan 28 2013
a(n) = (2*n^3-6*n^2-23*n+63+3*(n-5)*(-1)^n)/48, for n>=5. - Luce ETIENNE, Apr 07 2015
a(n) = (1/2) * Sum_{i=1..n-4} floor((i+1)*(n-i-2)/2). - Wesley Ivan Hurt, May 07 2016

Extensions

Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017