cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003472 a(n) = 2^(n-4)*C(n,4).

Original entry on oeis.org

1, 10, 60, 280, 1120, 4032, 13440, 42240, 126720, 366080, 1025024, 2795520, 7454720, 19496960, 50135040, 127008768, 317521920, 784465920, 1917583360, 4642570240, 11142168576, 26528972800, 62704844800, 147220070400
Offset: 4

Views

Author

Keywords

Comments

Number of 4D hypercubes in n-dimensional hypercube. - Henry Bottomley, Apr 14 2000
With four leading zeros, binomial transform of C(n,4). - Paul Barry, Apr 10 2003
If X_1, X_2, ..., X_n is a partition of a 2n-set X into 2-blocks, then, for n>3, a(n) is equal to the number of (n+4)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A038207(n,4).

Programs

  • GAP
    List([4..30], n-> 2^(n-4)*Binomial(n,4)); # G. C. Greubel, Aug 27 2019
  • Magma
    [2^(n-4)*Binomial(n, 4): n in [4..30]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    A003472:=-1/(2*z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(binomial(n,4)*2^(n-4),n=4..24); # Zerinvary Lajos, Jun 12 2008
  • Mathematica
    Table[2^(n-4) Binomial[n,4],{n,4,50}] (* or *) LinearRecurrence[{10,-40,80,-80,32},{1,10,60,280,1120},50] (* Harvey P. Dale, May 27 2017 *)
  • PARI
    a(n)=binomial(n,4)<<(n-4) \\ Charles R Greathouse IV, May 18 2015
    
  • Sage
    [2^(n-4)*binomial(n,4) for n in (4..30)] # G. C. Greubel, Aug 27 2019
    

Formula

a(n) = 2*a(n-1) + A001789(n-1).
From Paul Barry, Apr 10 2003: (Start)
O.g.f.: x^4/(1-2*x)^5.
E.g.f.: exp(2*x)(x^4/4!) (with 4 leading zeros). (End)
a(n) = Sum_{i=4..n} binomial(i,4)*binomial(n,i). Example: for n=7, a(7) = 1*35 + 5*21 + 15*7 + 35*1 = 280. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=4} 1/a(n) = 20/3 - 8*log(2).
Sum_{n>=4} (-1)^n/a(n) = 216*log(3/2) - 260/3. (End)

Extensions

More terms from James Sellers, Apr 15 2000