A003517 Number of permutations of [n+1] with exactly 1 increasing subsequence of length 3.
1, 6, 27, 110, 429, 1638, 6188, 23256, 87210, 326876, 1225785, 4601610, 17298645, 65132550, 245642760, 927983760, 3511574910, 13309856820, 50528160150, 192113383644, 731508653106, 2789279908316, 10649977831752, 40715807302800, 155851062397940, 597261490737912
Offset: 2
Examples
a(3)=6 because the only permutations of 1234 with exactly 1 increasing subsequence of length 3 are 1423, 4123, 1342, 2314, 2341, 3124.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 9.
- David Callan, A recursive bijective approach to counting permutations..., arXiv:math/0211380 [math.CO], 2002.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751. [Annotated scanned copy]
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 31.
- Hilmar Haukur Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding permutations, PU. M. A., Vol. 21 , No. 2 (2010), pp. 265-284 (see 4.3 p. 277).
- Richard K. Guy, Letter to N. J. A. Sloane, May 1990.
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Markus Kuba and Alois Panholzer, Stirling permutations containing a single pattern of length three, Australasian Journal of Combinatorics, Vol. 74, No. 2 (2019), pp. 216-239.
- Nik Lygeros and Olivier Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq., Vol. 13 (2010), Article 10.7.4.
- John Noonan, The number of permutations containing exactly one increasing subsequence of length three, Discrete Math., Vol. 152, No. 1-3 (1996), pp. 307-313.
- John Noonan and Doron Zeilberger, The Enumeration of Permutations With a Prescribed Number of "Forbidden" Patterns, arXiv:math/9808080 [math.CO], 1998.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.
- L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]
- Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., Vol. 10 (2003), Article N5.
Crossrefs
Programs
-
Maple
A003517List := proc(m) local A, P, n; A := [1]; P := [1,1,1,1,1]; for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]); A := [op(A), P[-1]] od; A end: A003517List(25); # Peter Luschny, Mar 26 2022
-
Mathematica
f[x_] = (Sqrt[1 - 4 x] - 1)^6/(64 x^4); CoefficientList[Series[f[x], {x, 0, 25}], x][[3 ;; 26]] (* Jean-François Alcover, Jul 13 2011, after g.f. *) Table[6 Binomial[2n+1,n-2]/(n+4),{n,2,30}] (* Harvey P. Dale, Feb 27 2012 *)
-
PARI
a(n)=6*binomial(2*n+1,n-2)/(n+4) \\ Charles R Greathouse IV, May 18 2015
-
PARI
x='x+O('x^50); Vec(x^2*((1-(1-4*x)^(1/2))/(2*x))^6) \\ Altug Alkan, Nov 01 2015
Formula
a(n) = 6*binomial(2*n+1, n-2)/(n+4).
G.f.: x^2*C(x)^6, where C(x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
E.g.f.: exp(2*x)*(Bessel_I(2,2*x) - Bessel_I(4,2*x)). - Paul Barry, Jun 04 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n >= 5, a(n-3) = (-1)^(n-5)*coeff(charpoly(A,x),x^5). - Milan Janjic, Jul 08 2010
a(n) = Sum_{i>=1, j>=1, k>=1, i+j+k=n+1} Catalan(i)*Catalan(j)*Catalan(k). T. D. Noe, Dec 22 2010
D-finite with recurrence -(n+4)*(n-2)*a(n) + 2*n*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=2} 1/a(n) = 7/2 - 34*Pi/(27*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 828*log(phi)/(25*sqrt(5)) - 2819/450, where phi is the golden ratio (A001622). (End)
a(n) ~ 3*4^(n+1)/(n^(3/2)*sqrt(Pi)). - Stefano Spezia, Apr 17 2024
Comments