A007405
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=2.
Original entry on oeis.org
1, 2, 6, 24, 116, 648, 4088, 28640, 219920, 1832224, 16430176, 157554048, 1606879040, 17350255744, 197553645440, 2363935624704, 29638547505408, 388328781668864, 5304452565517824, 75381218537805824, 1112348880749130752, 17014743624340539392, 269360902955086379008
Offset: 0
a(4) = 116 = sum of top row terms of M^3 = (49 + 44 + 18 + 4 + 1).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Hasan Arslan, Nazmiye Alemdar, Mariam Zaarour, and Hüseyin Altındiş, On Bell numbers of type D, arXiv:2504.16522 [math.CO], 2025. See p. 3.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 2.
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
- Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
- Paul Barry, Eulerian-Dowling Polynomials as Moments, Using Riordan Arrays, arXiv:1702.04007 [math.CO], 2017.
- Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
- Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 25.
- Adam Buck, Jennifer Elder, Azia A. Figueroa, Pamela E. Harris, Kimberly Harry, and Anthony Simpson, Flattened Stirling Permutations, arXiv:2306.13034 [math.CO], 2023. See p. 14.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
- John M. Neuberger, Nándor Sieben, and James W. Swift, Invariant Polydiagonal Subspaces of Matrices and Constraint Programming, arXiv:2411.10904 [math.DS], 2024. See p. 7.
- Tilman Piesk, Sets of fixed points of permutations of the n-cube: a(3)=24 for the cube and a(4)=116 for the tesseract.
- N. J. A. Sloane, Transforms
- R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
-
m:=20; c:=2; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
-
max = 19; f[x_]:= Exp[x + Exp[2x]/2 -1/2]; CoefficientList[Series[f[x], {x,0,max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 22 2011 *)
Table[Sum[Binomial[n, k] * 2^k * BellB[k, 1/2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
x='x+O('x^66); Vec(serlaplace(exp(x+1/2*exp(2*x)-1/2))) \\ Joerg Arndt, May 13 2013
-
@CachedFunction
def S(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return S(n-1, k-1, m) + (m*(k+1)-1)*S(n-1, k, m)
def A007405(n): return add(S(n, k, 2) for k in (0..n)) # Peter Luschny, May 20 2013
-
b=2;
def A007405_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(x +(exp(b*x)-1)/b) ).egf_to_ogf().list()
A007405_list(30) # G. C. Greubel, Feb 24 2019
A003575
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=3.
Original entry on oeis.org
1, 2, 7, 35, 214, 1523, 12349, 112052, 1120849, 12219767, 143942992, 1819256321, 24526654381, 350974470746, 5308470041299, 84554039118383, 1413794176669942, 24745966692370607, 452277149756692105, 8612255652371171012, 170517319084490074405
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..210
- Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math., Vol. 159, No. 1-3 (1996), pp. 13-33.
- Thomas A. Dowling, A class of geometric lattices based on finite groups, Journal of Combinatorial Theory, Series B, Vol. 14, No. 1 (1973), pp. 61-86.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Mahid M. Mangontarum and Jacob Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J. Int. Seq., Vol. 18 (2015), Article 15.9.8.
-
m:=30; c:=3; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 20 2019
-
seq(coeff(series(n!*exp(z+(1/3)*exp(3*z)-(1/3)),z,n+1), z, n), n=0..30); # Muniru A Asiru, Feb 19 2019
-
With[{nn=20},CoefficientList[Series[Exp[x+Exp[3x]/3-1/3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 04 2019 *)
Table[Sum[Binomial[n, k] * 3^k * BellB[k, 1/3], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + exp(3*x)/3 - 1/3))) \\ Michel Marcus, Feb 09 2018
-
b=3;
def A003575_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(x +(exp(b*x)-1)/b) ).egf_to_ogf().list()
A003575_list(30) # G. C. Greubel, Feb 20 2019
A003576
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=4.
Original entry on oeis.org
1, 2, 8, 48, 352, 3008, 29440, 324096, 3947520, 52541440, 757260288, 11733385216, 194272854016, 3419584921600, 63707979972608, 1251489089060864, 25836869372608512, 558946705406427136, 12638569755079344128, 298003073694026432512, 7312035980392431353856
Offset: 0
-
m:=20; c:=4; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 22 2019
-
seq(coeff(series(factorial(n)*exp(z+(1/4)*exp(4*z)-(1/4)),z,n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 22 2019
-
With[{m=20, b=4}, CoefficientList[Series[Exp[x+(Exp[b*x]-1)/b], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 22 2019 *)
Table[Sum[Binomial[n, k] * 4^k * BellB[k, 1/4], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
my(x='x+O('x^20)); b=4; Vec(serlaplace(exp(x+(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 22 2019
-
m = 20; b=4; T = taylor(exp(x+(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 22 2019
A003577
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=5.
Original entry on oeis.org
1, 2, 9, 63, 536, 5307, 60389, 775988, 11062391, 172638727, 2921519374, 53221709973, 1037320865141, 21517178350762, 472862758184789, 10966587174511443, 267502464814857936, 6842498829509972687, 183057455239626138009, 5110016898453125496548
Offset: 0
-
b:=5;; a:=[1,2];; for n in [3..20] do a[n]:=2*a[n-1]+Sum([0..n-3],i->Binomial(n-2,i)*b^(n-2-i)*a[i+1]); od; Print(a); # Muniru A Asiru, Apr 10 2019
-
m:=20; c:=5; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
-
With[{m=20, b=5}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b],{x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 5^k * BellB[k, 1/5], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
my(x='x+O('x^20)); b=5; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
-
m = 20; b=5; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
A003580
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=8.
Original entry on oeis.org
1, 2, 12, 120, 1424, 19488, 307904, 5539712, 111259904, 2454487552, 58847153152, 1522019629056, 42209521995776, 1248370355347456, 39186678731423744, 1300179383923212288, 45436201241711542272, 1667242078056889843712, 64063345344029286727680
Offset: 0
-
m:=20; c:=8; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
-
seq(coeff(series(factorial(n)*exp(z+(1/8)*exp(8*z)-(1/8)),z,n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
-
With[{m=20, b=8}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b],{x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 8^k * BellB[k, 1/8], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
my(x='x+O('x^20)); b=8; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
-
m = 20; b=8; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
A003579
Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=7.
Original entry on oeis.org
1, 2, 11, 99, 1066, 13283, 190933, 3117900, 56729565, 1132679479, 24564972756, 574431351673, 14394977015245, 384489778509034, 10894501505088695, 326149933663962479, 10280153573323314858
Offset: 0
-
b:=7;; a:=[1,2];; for n in [3..20] do a[n]:=2*a[n-1]+Sum([0..n-3],i->Binomial(n-2,i)*b^(n-2-i)*a[i+1]); od; Print(a); # Muniru A Asiru, Apr 10 2019
-
m:=20; c:=7; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
-
With[{m=20, b=7}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b],{x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 7^k * BellB[k, 1/7], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
Vec(serlaplace( exp(z + 1/7 * exp(7 * z) - 1/7) ) ) \\ Joerg Arndt, Feb 24 2019
-
m = 20; b=7; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
A003581
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=9.
Original entry on oeis.org
1, 2, 13, 143, 1852, 27563, 473725, 9290396, 203745235, 4912490375, 128777672338, 3643086083981, 110557605978901, 3579776914324250, 123074955978249433, 4474133111905169219, 171363047274358839412, 6893620459732188296591, 290475101469031118494993
Offset: 0
G.f. = 1 + 2*x + 13*x^2 + 143*x^3 + 1852*x^4 + 27563*x^5 + ...
Cf.
A000110 (b=1),
A007405 (b=2),
A003575 (b=3),
A003576 (b=4),
A003577 (b=5),
A003578 (b=6),
A003579 (b=7),
A003580 (b=8), this sequence (b=9),
A003582 (b=10),
A364069 (b=63),
A364070 (b=624).
-
m:=20; c:=9; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
-
seq(coeff(series(factorial(n)*exp(z+(1/9)*exp(9*z)-(1/9)),z,n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
-
With[{m=20, b=9}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b],{x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 9^k * BellB[k, 1/9], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
Vec(serlaplace(exp(z + (exp(9*z) - 1)/9))) \\ Michel Marcus, Nov 07 2014
-
m = 20; b=9; T = taylor(exp(x +(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
A003582
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=10.
Original entry on oeis.org
1, 2, 14, 168, 2356, 37832, 701464, 14866848, 352943376, 9219925792, 261954304224, 8033968939648, 264411579439936, 9288709762556032, 346608927301622144, 13680000261825018368, 569006722158124974336, 24864267879086770135552, 1138321277772163220033024
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..180
- Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
-
m:=20; c:=10; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
-
seq(coeff(series(factorial(n)*exp(z+(1/10)*exp(10*z)-(1/10)),z,n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
-
With[{m=20, b=10}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b],{x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 10^k * BellB[k, 1/10], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
-
my(x='x+O('x^20)); b=10; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
-
m = 20; b=10; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
A337042
a(n) = exp(-1/6) * Sum_{k>=0} (6*k - 1)^n / (6^k * k!).
Original entry on oeis.org
1, 0, 6, 36, 324, 3456, 43416, 618192, 9778320, 169827840, 3210376032, 65540155968, 1435094563392, 33510354739200, 830486180748672, 21756166766173440, 600339119317643520, 17394883290643709952, 527782830161632077312, 16727350847049194775552
Offset: 0
-
nmax = 19; CoefficientList[Series[Exp[(Exp[6 x] - 1)/6 - x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] 6^k a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 19}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 6^k BellB[k, 1/6], {k, 0, n}], {n, 0, 19}]
A334162
a(0) = 1; thereafter a(n) = exp(-1/n) * Sum_{k>=0} (n*k + 1)^n / (n^k * k!).
Original entry on oeis.org
1, 2, 6, 35, 352, 5307, 111592, 3117900, 111259904, 4912490375, 261954304224, 16560019685937, 1222893826048000, 104189533522270666, 10132262911996769408, 1114216450970154278543, 137427598621356912082944, 18877351974681584403701519, 2869969478954093766868948480
Offset: 0
Cf.
A000110,
A007405,
A003575,
A003576,
A003577,
A003578,
A003579,
A003580,
A003581,
A003582,
A301419,
A334165.
-
Table[SeriesCoefficient[1/(1 - x) Sum[(x/(1 - x))^k/Product[(1 - n j x/(1 - x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! SeriesCoefficient[Exp[x + (Exp[n x] - 1)/n], {x, 0, n}], {n, 1, 18}]]
Showing 1-10 of 14 results.
Comments