A003683 a(n) = 2^(n-1)*(2^n - (-1)^n)/3.
0, 1, 2, 12, 40, 176, 672, 2752, 10880, 43776, 174592, 699392, 2795520, 11186176, 44736512, 178962432, 715816960, 2863333376, 11453202432, 45813071872, 183251763200, 733008101376, 2932030308352, 11728125427712
Offset: 0
References
- M. Gardner, Riddles of the Sphinx, New Mathematical Library, M.A.A., 1987, p. 145. Math. Rev. 89i:00015.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- T. Hoeholdt, H. E. Jensen, and J. Justesen, Aperiodic correlations and the merit factor of a class of binary sequences, IEEE Trans. Inform. Theory, 13 (1985), 549-552
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 7.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- Eric Weisstein's World of Mathematics, Octahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (2,8).
Programs
-
Magma
[2^(n-1)*(2^n - (-1)^n)/3: n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
-
Maple
A003683:=n->2^(n-1)*(2^n - (-1)^n)/3; seq(A003683(n), n=0..50); # Wesley Ivan Hurt, Dec 06 2013
-
Mathematica
Table[2^(n-1) (2^n-(-1)^n)/3,{n,0,30}] (* or *) LinearRecurrence[{2,8},{0,1},30] (* Harvey P. Dale, Sep 15 2013 *)
-
PARI
a(n)=if(n<0,0,2^(n-1)*(2^n-(-1)^n)/3)
-
PARI
a(n)=(2^n-(-1)^n)<<(n-1)/3 \\ Charles R Greathouse IV, Apr 17 2012
-
Sage
[lucas_number1(n,2,-8) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
Formula
a(n) = A003674(n)/3.
a(n) = 2*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1. - Barry E. Williams, Jan 04 2000
G.f.: x/((1+2*x)*(1-4*x)).
a(n) = ((1+3)^n-(1-3)^n)/6. - Paul Barry, May 14 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k+1)*9^k. - Paul Barry, May 20 2003
E.g.f.: exp(x)*sinh(3*x)/3. - Paul Barry, Jul 09 2003
a(n+1) = 2^n*A001045(n+1). - R. J. Mathar, Jul 08 2009
a(n+1) = Sum_{k=0..n} A238801(n,k)*3^k. - Philippe Deléham, Mar 07 2014
Extensions
Erroneous references to spanning trees in K_2 X P_n deleted by Frans Faase, Feb 07 2009
Comments