A084175
Jacobsthal oblong numbers.
Original entry on oeis.org
0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 11.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 6.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-8).
-
List([0..30], n-> (2^(2*n+1) -(-2)^n -1)/9); # G. C. Greubel, Sep 21 2019
-
[(2*4^n-(-2)^n-1)/9: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
for n from 1 to 25 do print(round(2^n/3)*round(2^(n+1)/3)) od; # Gary Detlefs, Feb 10 2010
-
Table[(2*4^n -(-2)^n -1)/9, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011, modified by G. C. Greubel, Sep 21 2019 *)
LinearRecurrence[{3,6,-8}, {0,1,3}, 25] (* Jean-François Alcover, Sep 21 2017 *)
-
a(n)=(2*4^n-(-2)^n-1)/9 \\ Charles R Greathouse IV, Sep 24 2015
-
def A084175(n): return ((m:=1<Chai Wah Wu, Apr 25 2025
-
[gaussian_binomial(n, 2, -2) for n in range(1, 26)] # Zerinvary Lajos, May 28 2009
A091914
a(n) = 2*a(n-1) + 12*a(n-2).
Original entry on oeis.org
1, 2, 16, 56, 304, 1280, 6208, 27776, 130048, 593408, 2747392, 12615680, 58200064, 267788288, 1233977344, 5681414144, 26170556416, 120518082560, 555082842112, 2556382674944, 11773759455232, 54224111009792, 249733335482368
Offset: 0
-
a := [1,2];; for n in [3..30] do a[n] := 2*a[n-1] + 12*a[n-2]; od; a; # Muniru A Asiru, Jan 31 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/(1-2*x-12*x^2))) // G. C. Greubel, Jan 30 2018
-
a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then 2*procname(n-1) + 12*procname(n-2) fi; end: # Muniru A Asiru, Jan 31 2018
-
LinearRecurrence[{2,12},{1,2},30] (* or *) With[{s=Sqrt[13]},Table[ Simplify[ -(((13+s)((1-s)^n-(1+s)^n))/(26(1+s)))],{n,30}]] (* Harvey P. Dale, May 25 2013 *)
-
my(x='x+O('x^30)); Vec(1/(1-2*x-12*x^2)) \\ G. C. Greubel, Jan 30 2018
-
[lucas_number1(n,2,-12) for n in range(1, 30)] # Zerinvary Lajos, Apr 22 2009
A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A054881
Number of walks of length n along the edges of an octahedron starting and ending at a vertex and also ( with a(0)=0 ) between two opposite vertices.
Original entry on oeis.org
1, 0, 4, 8, 48, 160, 704, 2688, 11008, 43520, 175104, 698368, 2797568, 11182080, 44744704, 178946048, 715849728, 2863267840, 11453333504, 45812809728, 183252287488, 733007052800, 2932032405504, 11728121233408
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
-
[(4^n+(-1)^n*2^(n+1)+3*0^n)/6: n in [0..30]]; // Vincenzo Librandi, Apr 23 2015
-
CoefficientList[Series[(1-2*x-4*x^2)/((1+2x)*(1-4x)), {x,0,40}], x] (* L. Edson Jeffery, Apr 22 2015 *)
LinearRecurrence[{2,8}, {1,0,4}, 41] (* G. C. Greubel, Feb 06 2023 *)
-
[(4^n + (-1)^n*2^(n+1) + 3*0^n)/6 for n in range(31)] # G. C. Greubel, Feb 06 2023
A143683
Pascal-(1,8,1) array.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 19, 19, 1, 1, 28, 118, 28, 1, 1, 37, 298, 298, 37, 1, 1, 46, 559, 1540, 559, 46, 1, 1, 55, 901, 4483, 4483, 901, 55, 1, 1, 64, 1324, 9856, 21286, 9856, 1324, 64, 1, 1, 73, 1828, 18388, 67006, 67006, 18388, 1828, 73, 1, 1, 82, 2413, 30808, 164242, 304300, 164242, 30808, 2413, 82, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 10, 19, 28, 37, 46, 55, ... A017173;
1, 19, 118, 298, 559, 901, 1324, ...
1, 28, 298, 1540, 4483, 9856, 18388, ...
1, 37, 559, 4483, 21286, 67006, 164242, ...
1, 46, 901, 9856, 67006, 304300, 1004590, ...
1, 55, 1324, 18388, 164242, 1004590, 4443580, ...
Antidiagonal triangle begins as:
1;
1, 1;
1, 10, 1;
1, 19, 19, 1;
1, 28, 118, 28, 1;
1, 37, 298, 298, 37, 1;
1, 46, 559, 1540, 559, 46, 1;
1, 55, 901, 4483, 4483, 901, 55, 1;
Cf.Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7).
-
a143683 n k = a143683_tabl !! n !! k
a143683_row n = a143683_tabl !! n
a143683_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 8) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A143683:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A143683(n,k,8): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 9], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 9).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
A202064
Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
Last nonzero term in each row appears to be
A124625.
A034839 counts subsets by number of maximal runs, for anti-runs
A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs
A384905.
Cf.
A000045,
A000071,
A001629,
A010027,
A053538,
A208342,
A210034,
A245563,
A268193,
A384177,
A384890.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)
A238801
Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).
Original entry on oeis.org
1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0
Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
Cf. Columns:
A000027,
A000292,
A000389,
A000580,
A000582,
A001288,
A010966,
A010968,
A010970,
A010972,
A010974,
A010976,
A010980,
A010982,
A010984,
A010986,
A010988,
A010990,
A010992,
A010994,
A010996,
A010998,
A011000,
A017713,
A017715,
A017717,
A017719,
A017721,
A017723,
A017725,
A017727,
A017729,
A017731,
A017733,
A017735,
A017737,
A017739,
A017741,
A017743,
A017745,
A017747,
A017749,
A017751,
A017753,
A017755,
A017757,
A017759,
A017761,
A017763.
-
Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
T(n,k) = binomial(n+1, k+1)*(1-(k % 2));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017
A246036
Expansion of (1+4*x)/((1+2*x)*(1-4*x)).
Original entry on oeis.org
1, 6, 20, 88, 336, 1376, 5440, 21888, 87296, 349696, 1397760, 5593088, 22368256, 89481216, 357908480, 1431666688, 5726601216, 22906535936, 91625881600, 366504050688, 1466015154176, 5864062713856, 23456246661120, 93824995033088, 375299963355136, 1501199886974976, 6004799480791040, 24019198057381888
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Christophe Doche, Even moments of generalized Rudin-Shapiro polynomials, Mathematics of computation 74.252 (2005): 1923-1935.
- Christophe Doche and Laurent Habsieger, Moments of the Rudin-Shapiro polynomials, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505.
- Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (2,8).
-
I:=[1,6]; [n le 2 select I[n] else 2*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 22 2014
-
CoefficientList[Series[(1+4x)/((1+2x)(1-4x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2014 *)
-
Vec((1+4*x)/((1+2*x)*(1-4*x)) + O(x^100)) \\ Colin Barker, Aug 22 2014
-
apply( A246036(n)=(4^(1+n)-(-2)^n)/3, [0..30]) \\ M. F. Hasler, Sep 18 2020
-
A246036= BinaryRecurrenceSequence(2,8,1,6)
[A246036(n) for n in range(41)] # G. C. Greubel, Mar 08 2023
A071930
Number of words of length 2n in the two letters s and t that reduce to the identity 1 by using the relations ssTT=1, ststSS=1 and ststTT=1, where S and T are the inverses of s and t, respectively (i.e., sS=1 and tT=1). The generators s and t and the three stated relations generate the quaternion group Q4.
Original entry on oeis.org
0, 6, 12, 72, 240, 1056, 4032, 16512, 65280, 262656, 1047552, 4196352, 16773120, 67117056, 268419072, 1073774592, 4294901760, 17180000256, 68719214592, 274878431232, 1099510579200, 4398048608256, 17592181850112
Offset: 1
John W. Layman and Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com), Jun 14 2002
-
[4^(n-1)-(-2)^(n-1): n in [1..40]]; // G. C. Greubel, Feb 17 2023
-
Table[2^(2n-2)-(-2)^(n-1),{n,30}] (* or *) LinearRecurrence[{2,8},{0,6},30] (* Harvey P. Dale, Dec 10 2012 *)
-
[4^(n-1)-(-2)^(n-1) for n in range(1,41)] # G. C. Greubel, Feb 17 2023
A123585
Triangle T(n,k), 0<=k<=n, given by [1, -1, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 0, 2, 2, -1, 1, 5, 3, -1, -2, 4, 10, 5, 0, -4, -4, 12, 20, 8, 1, -2, -13, -4, 31, 38, 13, 1, 3, -11, -33, 3, 73, 71, 21, 0, 6, 6, -42, -74, 34, 162, 130, 34, -1, 3, 24, 0, -130, -146, 128, 344, 235, 55, -1, -4, 21, 72, -50, -352
Offset: 0
Triangle begins:
1;
1, 1;
0, 2, 2;
-1, 1, 5, 3;
-1, -2, 4, 10, 5;
0, -4, -4, 12, 20, 8;
1, -2, -13, -4, 31, 38, 13;
1, 3, -11, -33, 3, 73, 71, 21;
0, 6, 6, -42, -74, 34, 162, 130, 34;
-
CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x + (1 - y^2)*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 16 2017 *)
Showing 1-10 of 27 results.
Comments