A096664
Numerators of terms in series expansion of sin(tan(x)).
Original entry on oeis.org
1, 1, -1, -55, -143, -968167, -7000033, -571772647, -843598411471, -1263845119891, -740683182137153, -474904166544135457, 2379183287545454197, 237037449673450822122569, 155015924346163216960553093, 50568039962561468889366023, 1801162678607996830733199407999, 2359789149102567189423591182268559
Offset: 0
sin(tan(x)) = x + 1/6*x^3 - 1/40*x^5 - 55/1008*x^7 - 143/3456*x^9 + ...
-
Numerator[Take[CoefficientList[Series[Sin[Tan[x]], {x,0,40}], x], {2,-1,2}]] (* G. C. Greubel, Nov 17 2016 *)
A096671
Denominators of terms in series expansion of sin(tan(x)), odd powers only.
Original entry on oeis.org
1, 6, 40, 1008, 3456, 39916800, 566092800, 100590336000, 355687428096000, 1431118828339200, 2688996956405760000, 8617338912961658880000, 224800145555521536000000, 10888869450418352160768000000, 8841761993739701954543616000000, 4500732706172918893117440000000, 280107019961673757919941754880000000
Offset: 0
x + (1/6)*x^3 - (1/40)*x^5 - (55/1008)*x^7 - (143/3456)*x^9 + ...
A296841
Expansion of e.g.f. sin(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, -12, -193, -2365, -18552, 500689, 48649969, 2981261772, 169237306055, 9187565146331, 427287357700176, 6011297159973313, -2887128048794477663, -711942625068679870620, -132369975517302093882097, -22968753773651295426439021
Offset: 0
sin(x*tan(x/2)) = x^2/2! + x^4/4! - 12*x^6/6! - 193*x^8/8! - 2365*x^10/10! - 18552*x^12/12! + ...
-
nmax = 17; Table[(CoefficientList[Series[Sin[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A003723
E.g.f. exp(tanh(x)).
Original entry on oeis.org
1, 1, 1, -1, -7, -3, 97, 275, -2063, -15015, 53409, 968167, -752343, -77000363, -166831871, 7433044411, 43685848289, -843598411471, -9398558916159, 107426835190735, 2116926930779225, -14072980460605907
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
With[{nn = 30}, CoefficientList[Series[Exp[Tanh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Apr 11 2014 *)
-
a(n):=if n=0 then 1 else sum(sum(binomial(k-1,m-1)*k!*(-1)^(m+k)*2^(n-k)*stirling2(n,k),k,m,n)/m!,m,1,n); /* Vladimir Kruchinin, Jun 28 2011 */
A296679
Expansion of e.g.f. arcsinh(arctanh(x)) (odd powers only).
Original entry on oeis.org
1, 1, 13, 341, 18649, 1599849, 205524837, 36391450941, 8546308276401, 2564025898856913, 957697868873929149, 435619128300038521893, 237104370189582892175241, 152148421079949399306125625, 113672892845152570858515803925, 97820056722556900357454981990925
Offset: 0
arcsinh(arctanh(x)) = x/1! + x^3/3! + 13*x^5/5! + 341*x^7/7! + 18649*x^9/9! + 1599849*x^11/11! + ...
-
nmax = 16; Table[(CoefficientList[Series[ArcSinh[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 16; Table[(CoefficientList[Series[Log[(Log[1 + x] - Log[1 - x])/2 + Sqrt[1 + (Log[1 + x] - Log[1 - x])^2/4]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A013517
Denominator of [x^(2n+1)] in the Taylor expansion sin(cosec(x)-cot(x))= x/2 + x^3/48 - x^5/1280 - 55*x^7/129024 - 143*x^9/1769472 + ...
Original entry on oeis.org
2, 48, 1280, 129024, 1769472, 81749606400, 4637432217600, 3296144130048000, 46620662575398912000, 750318428272302489600, 5639235345120252395520000, 72287478143981475374039040000, 7543041197632849604247552000000, 1461479318123759876522171695104000000, 4746884825265972078944013665697792000000
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
sin(cosec(x) - cot(x)) = x/(2^1*1!) + x^3/(2^3*3!) - 3*x^5/(2^5*5!) - 275*x^7/(2^7*7!) - 15015*x^9/(2^9*9!) - 968167*x^11/(2^11*11!) + ... (apparently covered by A003706).
-
x = 'x + O('x^50); v = apply(x->denominator(x), Vec(sin(1/sin(x)-cotan(x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Sep 20 2018
Showing 1-6 of 6 results.
Comments