cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003787 Order of universal Chevalley group A_n (3).

Original entry on oeis.org

1, 24, 5616, 12130560, 237783237120, 42064805779476480, 67034222101339041669120, 961721214905722855895197286400, 124190524600592082795473760093457612800, 144339416867688029764487130056208182629053235200
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(3^n - 3^k): k in [0..n-1]]/2: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[3, #] & /@ Range[0, 9] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053290(n)/2. - Ralf Stephan, Mar 30 2004
a(n) = A(3,n) where A(q,n) = q^(n*(n+1)/2) * Product_{k=2..n+1}(q^k-1). - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 3^(n*(n+2)), where c = (3/2) * A100220 = 0.840189116891... . - Amiram Eldar, Jul 07 2025

Extensions

One more term from Sean A. Irvine, Sep 18 2015

A003789 Order of universal Chevalley group A_n (5).

Original entry on oeis.org

1, 120, 372000, 29016000000, 56653740000000000, 2766118855500000000000000, 3376566710423156250000000000000000, 103044374585338670859375000000000000000000000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(5^n-5^k): k in [0..n-1]]/4: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[5, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053292(n)/4. - Ralf Stephan, Mar 30 2004
a(n) = A(5,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 5^(n*(n+2)), where c = (5/4) * A100222 = 0.950415994839... . - Amiram Eldar, Jul 07 2025

A003790 Order of universal Chevalley group A_n (7).

Original entry on oeis.org

1, 336, 5630688, 4635182361600, 187035198320488089600, 369826556020831611935738265600, 35832085525362833262818017603275320524800, 170115000551935077294273059250893063598899496222720000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(7^n - 7^k): k in [0..n-1]]/6: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[7, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053293(n)/6. - Ralf Stephan, Mar 30 2004
a(n) = A(7,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 7^(n*(n+2)), where c = (7/6) * A100220 = 0.840189116891... . - Amiram Eldar, Jul 07 2025

Extensions

a(7) from Sean A. Irvine, Sep 18 2015

A003792 Order of universal Chevalley group A_n (9).

Original entry on oeis.org

1, 720, 42456960, 203039372390400, 78660280796419613491200, 2468438315722201136962330755072000, 6274437692242927471137606015213542491815936000, 1291851049702792234730057308758464452124128263449062932480000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(9^n - 9^k): k in [0..n-1]]/8: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[9, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A052497(n)/8. - Ralf Stephan, Mar 30 2004
a(n) = A(9,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 9^(n*(n+2)), where c = (9/8) * A132037 = 0.9861303982904... . - Amiram Eldar, Jul 07 2025

Extensions

a(7) from Sean A. Irvine, Sep 18 2015

A052496 Number of nonsingular n X n matrices over GF(8).

Original entry on oeis.org

1, 7, 3528, 115379712, 241909719367680, 32467582052437076213760, 278893342293098904613804037898240, 153323163270070838469523866093442017326530560
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(8^n-8^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 30 2013
    
  • Mathematica
    Table[Product[(8^n - 8^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = prod(j=0,n-1, 8^n - 8^j)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [product(8^n - 8^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019

Formula

a(n) = (8^n - 1)*(8^n - 8)*...*(8^n - 8^(n-1)).
a(n) = A109966(n)*A027876(n). - Bruno Berselli, Jan 30 2013
a(n) ~ c * 8^(n^2), where c = A132036. - Amiram Eldar, Jul 06 2025

A003788 Order of universal Chevalley group A_n (4).

Original entry on oeis.org

1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000, 72736898347485916060188672000, 78099458182389588115529148326215680000, 1341733356588640095264385107865053233298800640000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(4^n - 4^k): k in [0..n-1]]/3: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[4, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053291(n)/3. - Ralf Stephan, Mar 30 2004
a(n) = A(4,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 4^(n*(n+2)), where c = (4/3) * A100221 = 0.918050049493... . - Amiram Eldar, Jul 07 2025

Extensions

One more term from Sean A. Irvine, Sep 18 2015
Showing 1-6 of 6 results.