A019988
Number of ways of embedding a connected graph with n edges in the square lattice.
Original entry on oeis.org
1, 2, 5, 16, 55, 222, 950, 4265, 19591, 91678, 434005, 2073783, 9979772, 48315186, 235088794, 1148891118, 5636168859, 27743309673
Offset: 1
- Brian R. Barwell, "Polysticks," Journal of Recreational Mathematics, 22 (1990), 165-175.
- D. Goodger, An introduction to Polysticks
- M. Keller, Counting polyforms
- D. Knuth, Dancing Links, arXiv:cs/0011047 [cs.DS], 2000. (A discussion of backtracking algorithms which mentions some problems of polystick tiling.)
- Ed Pegg, Jr., Illustrations of polyforms
- N. J. A. Sloane, Illustration of a(1)-a(4)
- Eric Weisstein's World of Mathematics, Polyedge
- Wikicommons, Polysticks 5-sticks 6-sticks 7-sticks
If only translations (but not rotations) are factored, consider fixed polyedges (
A096267).
If reflections are considered different, we obtain the one-sided polysticks, counted by (
A151537). -
Jack W Grahl, Jul 24 2018
More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Feb 20 2002
A003787
Order of universal Chevalley group A_n (3).
Original entry on oeis.org
1, 24, 5616, 12130560, 237783237120, 42064805779476480, 67034222101339041669120, 961721214905722855895197286400, 124190524600592082795473760093457612800, 144339416867688029764487130056208182629053235200
Offset: 0
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
[&*[(3^n - 3^k): k in [0..n-1]]/2: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
-
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
f[3, #] & /@ Range[0, 9] (* Michael De Vlieger, Sep 18 2015 *)
A003789
Order of universal Chevalley group A_n (5).
Original entry on oeis.org
1, 120, 372000, 29016000000, 56653740000000000, 2766118855500000000000000, 3376566710423156250000000000000000, 103044374585338670859375000000000000000000000
Offset: 0
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
[&*[(5^n-5^k): k in [0..n-1]]/4: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
-
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[5, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)
A003790
Order of universal Chevalley group A_n (7).
Original entry on oeis.org
1, 336, 5630688, 4635182361600, 187035198320488089600, 369826556020831611935738265600, 35832085525362833262818017603275320524800, 170115000551935077294273059250893063598899496222720000
Offset: 0
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
[&*[(7^n - 7^k): k in [0..n-1]]/6: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
-
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[7, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)
A052497
Number of nonsingular n X n matrices over GF(9).
Original entry on oeis.org
1, 8, 5760, 339655680, 1624314979123200, 629282246371356907929600, 19747506525777609095698646040576000, 50195501537943419769100848121708339934527488000
Offset: 0
-
[1] cat [&*[(9^n - 9^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
-
Table[Product[(9^n - 9^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = prod(j=0,n-1, 9^n - 9^j)}; \\ G. C. Greubel, May 14 2019
-
[product(9^n - 9^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
A003788
Order of universal Chevalley group A_n (4).
Original entry on oeis.org
1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000, 72736898347485916060188672000, 78099458182389588115529148326215680000, 1341733356588640095264385107865053233298800640000
Offset: 0
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
[&*[(4^n - 4^k): k in [0..n-1]]/3: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
-
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
f[4, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)
A003791
Order of universal Chevalley group A_n (8).
Original entry on oeis.org
1, 504, 16482816, 34558531338240, 4638226007491010887680, 39841906041871272087686291128320, 21903309038581548352789123727634573903790080
Offset: 0
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
[&*[(8^n - 8^k): k in [0..n-1]]/7: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
-
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[8, #] & /@ Range[0, 6] (* Michael De Vlieger, Sep 18 2015 *)
Showing 1-7 of 7 results.
Comments