cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A019988 Number of ways of embedding a connected graph with n edges in the square lattice.

Original entry on oeis.org

1, 2, 5, 16, 55, 222, 950, 4265, 19591, 91678, 434005, 2073783, 9979772, 48315186, 235088794, 1148891118, 5636168859, 27743309673
Offset: 1

Views

Author

Keywords

Comments

It is assumed that all edges have length one. - N. J. A. Sloane, Apr 17 2019
These are referred to as 'polysticks', 'polyedges' or 'polyforms'. - Jack W Grahl, Jul 24 2018
Number of connected subgraphs of the square lattice (or grid) containing n length-one line segments. Configurations differing only a rotation or reflection are not counted as different. The question may also be stated in terms of placing unit toothpicks in a connected arrangement on the square lattice. - N. J. A. Sloane, Apr 17 2019
The solution for n=5 features in the card game Digit. - Paweł Rafał Bieliński, Apr 17 2019

References

  • Brian R. Barwell, "Polysticks," Journal of Recreational Mathematics, 22 (1990), 165-175.

Crossrefs

If only translations (but not rotations) are factored, consider fixed polyedges (A096267).
If reflections are considered different, we obtain the one-sided polysticks, counted by (A151537). - Jack W Grahl, Jul 24 2018
Cf. A001997, A003792, A006372, A059103, A085632, A056841 (tree-like), A348095 (with cycles), A348096 (refined by symmetry), A181528.
See A336281 for another version.
6th row of A366766.

Formula

A348095(n) + A056841(n+1) = a(n). - R. J. Mathar, Sep 30 2021

Extensions

More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Feb 20 2002
a(18) from John Mason, Jun 01 2023

A003787 Order of universal Chevalley group A_n (3).

Original entry on oeis.org

1, 24, 5616, 12130560, 237783237120, 42064805779476480, 67034222101339041669120, 961721214905722855895197286400, 124190524600592082795473760093457612800, 144339416867688029764487130056208182629053235200
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(3^n - 3^k): k in [0..n-1]]/2: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[3, #] & /@ Range[0, 9] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053290(n)/2. - Ralf Stephan, Mar 30 2004
a(n) = A(3,n) where A(q,n) = q^(n*(n+1)/2) * Product_{k=2..n+1}(q^k-1). - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 3^(n*(n+2)), where c = (3/2) * A100220 = 0.840189116891... . - Amiram Eldar, Jul 07 2025

Extensions

One more term from Sean A. Irvine, Sep 18 2015

A003789 Order of universal Chevalley group A_n (5).

Original entry on oeis.org

1, 120, 372000, 29016000000, 56653740000000000, 2766118855500000000000000, 3376566710423156250000000000000000, 103044374585338670859375000000000000000000000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(5^n-5^k): k in [0..n-1]]/4: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[5, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053292(n)/4. - Ralf Stephan, Mar 30 2004
a(n) = A(5,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 5^(n*(n+2)), where c = (5/4) * A100222 = 0.950415994839... . - Amiram Eldar, Jul 07 2025

A003790 Order of universal Chevalley group A_n (7).

Original entry on oeis.org

1, 336, 5630688, 4635182361600, 187035198320488089600, 369826556020831611935738265600, 35832085525362833262818017603275320524800, 170115000551935077294273059250893063598899496222720000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(7^n - 7^k): k in [0..n-1]]/6: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[7, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053293(n)/6. - Ralf Stephan, Mar 30 2004
a(n) = A(7,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 7^(n*(n+2)), where c = (7/6) * A100220 = 0.840189116891... . - Amiram Eldar, Jul 07 2025

Extensions

a(7) from Sean A. Irvine, Sep 18 2015

A052497 Number of nonsingular n X n matrices over GF(9).

Original entry on oeis.org

1, 8, 5760, 339655680, 1624314979123200, 629282246371356907929600, 19747506525777609095698646040576000, 50195501537943419769100848121708339934527488000
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(9^n - 9^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[(9^n - 9^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = prod(j=0,n-1, 9^n - 9^j)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [product(9^n - 9^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019

Formula

a(n) = (9^n - 1)*(9^n - 9)*...*(9^n - 9^(n-1)).
a(n) = A053764(n)*A027877(n). - Bruno Berselli, Jan 30 2013
a(n) ~ c * 9^(n^2), where c = A132037. - Amiram Eldar, Jul 06 2025

A003788 Order of universal Chevalley group A_n (4).

Original entry on oeis.org

1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000, 72736898347485916060188672000, 78099458182389588115529148326215680000, 1341733356588640095264385107865053233298800640000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(4^n - 4^k): k in [0..n-1]]/3: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[4, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053291(n)/3. - Ralf Stephan, Mar 30 2004
a(n) = A(4,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 4^(n*(n+2)), where c = (4/3) * A100221 = 0.918050049493... . - Amiram Eldar, Jul 07 2025

Extensions

One more term from Sean A. Irvine, Sep 18 2015

A003791 Order of universal Chevalley group A_n (8).

Original entry on oeis.org

1, 504, 16482816, 34558531338240, 4638226007491010887680, 39841906041871272087686291128320, 21903309038581548352789123727634573903790080
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(8^n - 8^k): k in [0..n-1]]/7: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[8, #] & /@ Range[0, 6] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A052496(n)/7. - Ralf Stephan, Mar 30 2004
a(n) = A(8,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 8^(n*(n+2)), where c = (8/7) * A132036 = 0.982178279315... . - Amiram Eldar, Jul 07 2025
Showing 1-7 of 7 results.