cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A053290 Number of nonsingular n X n matrices over GF(3).

Original entry on oeis.org

1, 2, 48, 11232, 24261120, 475566474240, 84129611558952960, 134068444202678083338240, 1923442429811445711790394572800, 248381049201184165590947520186915225600, 288678833735376059528974260112416365258106470400
Offset: 0

Views

Author

Stephen G Penrice, Mar 04 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(3^n - 3^k): k in [0..n-1]]: n in [1..9]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[3^n - 3^k, {k, 0, n - 1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013; edited by Vincenzo Librandi, Jan 28 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=0,n-1, 3^n - 3^k), ", ")) \\ G. C. Greubel, May 31 2018

Formula

a(n) = Product_{k=0..n-1}(3^n-3^k). - corrected by Michel Marcus, Sep 18 2015
a(n) = A047656(n)*A027871(n). - Bruno Berselli, Jan 30 2013
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} A219205(k).
a(n) ~ c * 3^(n^2), where c = A100220. (End)

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A003793 Order of (usually) simple Chevalley group A_n (3).

Original entry on oeis.org

1, 12, 5616, 6065280, 237783237120, 21032402889738240, 67034222101339041669120, 480860607452861427947598643200, 124190524600592082795473760093457612800
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Block[{g, x, y}, g[x_, y_] := x^(y (y + 1)/2) Product[x^k - 1, {k, 2, y + 1}]; g[m, n]/GCD[n + 1, m - 1]]; f[3, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)

Formula

a(n) = a(3,n) where a(q,n) = A(q,n) / gcd(n+1, q-1) and A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * gcd(n, 2) * 3^(n^2 + 2*n), where c = (3/4) * A100220. - Amiram Eldar, Jul 11 2025

A003789 Order of universal Chevalley group A_n (5).

Original entry on oeis.org

1, 120, 372000, 29016000000, 56653740000000000, 2766118855500000000000000, 3376566710423156250000000000000000, 103044374585338670859375000000000000000000000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(5^n-5^k): k in [0..n-1]]/4: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[5, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053292(n)/4. - Ralf Stephan, Mar 30 2004
a(n) = A(5,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 5^(n*(n+2)), where c = (5/4) * A100222 = 0.950415994839... . - Amiram Eldar, Jul 07 2025

A003790 Order of universal Chevalley group A_n (7).

Original entry on oeis.org

1, 336, 5630688, 4635182361600, 187035198320488089600, 369826556020831611935738265600, 35832085525362833262818017603275320524800, 170115000551935077294273059250893063598899496222720000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(7^n - 7^k): k in [0..n-1]]/6: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[7, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053293(n)/6. - Ralf Stephan, Mar 30 2004
a(n) = A(7,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 7^(n*(n+2)), where c = (7/6) * A100220 = 0.840189116891... . - Amiram Eldar, Jul 07 2025

Extensions

a(7) from Sean A. Irvine, Sep 18 2015

A003792 Order of universal Chevalley group A_n (9).

Original entry on oeis.org

1, 720, 42456960, 203039372390400, 78660280796419613491200, 2468438315722201136962330755072000, 6274437692242927471137606015213542491815936000, 1291851049702792234730057308758464452124128263449062932480000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(9^n - 9^k): k in [0..n-1]]/8: n in [1..10]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[9, #] & /@ Range[0, 7] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A052497(n)/8. - Ralf Stephan, Mar 30 2004
a(n) = A(9,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 9^(n*(n+2)), where c = (9/8) * A132037 = 0.9861303982904... . - Amiram Eldar, Jul 07 2025

Extensions

a(7) from Sean A. Irvine, Sep 18 2015

A003788 Order of universal Chevalley group A_n (4).

Original entry on oeis.org

1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000, 72736898347485916060188672000, 78099458182389588115529148326215680000, 1341733356588640095264385107865053233298800640000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(4^n - 4^k): k in [0..n-1]]/3: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[4, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053291(n)/3. - Ralf Stephan, Mar 30 2004
a(n) = A(4,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 4^(n*(n+2)), where c = (4/3) * A100221 = 0.918050049493... . - Amiram Eldar, Jul 07 2025

Extensions

One more term from Sean A. Irvine, Sep 18 2015

A003791 Order of universal Chevalley group A_n (8).

Original entry on oeis.org

1, 504, 16482816, 34558531338240, 4638226007491010887680, 39841906041871272087686291128320, 21903309038581548352789123727634573903790080
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(8^n - 8^k): k in [0..n-1]]/7: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[8, #] & /@ Range[0, 6] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A052496(n)/7. - Ralf Stephan, Mar 30 2004
a(n) = A(8,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 8^(n*(n+2)), where c = (8/7) * A132036 = 0.982178279315... . - Amiram Eldar, Jul 07 2025

A003801 Order of universal Chevalley group A_3 (q) (or D_3 (q)), q = prime power.

Original entry on oeis.org

20160, 12130560, 987033600, 29016000000, 4635182361600, 34558531338240, 203039372390400, 4139330225184000, 50858076935877120, 1148120010326016000, 2851903720876769280, 15136750711925049600
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Programs

  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[#, 3] & /@ Select[Range[2, 22], PrimePowerQ] (* Michael De Vlieger, Sep 18 2015 *)

Formula

a(n) = A(A000961(n+1),3) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015

A316623 Array read by antidiagonals: T(n,k) is the order of the group SL(n,Z_k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 24, 168, 1, 1, 1, 48, 5616, 20160, 1, 1, 1, 120, 43008, 12130560, 9999360, 1, 1, 1, 144, 372000, 660602880, 237783237120, 20158709760, 1, 1, 1, 336, 943488, 29016000000, 167761422581760, 42064805779476480, 163849992929280, 1
Offset: 0

Views

Author

Andrew Howroyd, Jul 08 2018

Keywords

Comments

All rows are multiplicative.
Equivalently, the number of n X n matrices mod k with determinant 1.
Also, for k prime (but not higher prime powers) the number of n X n matrices over GF(k) with determinant 1.

Examples

			Array begins:
==============================================================
n\k| 1       2        3         4           5           6
---+----------------------------------------------------------
0  | 1       1        1         1           1            1 ...
1  | 1       1        1         1           1            1 ...
2  | 1       6       24        48         120          144 ...
3  | 1     168     5616     43008      372000       943488 ...
4  | 1   20160 12130560 660602880 29016000000 244552089600 ...
5  | 1 9999360 ...
...
		

Crossrefs

Rows n=2..4 are A000056, A011785, A011786.
Columns k=2..5, 7 are A002884, A003787, A011787, A003789, A003790.
Cf. A316622.

Programs

  • GAP
    T:=function(n,k) if k=1 or n=0 then return 1; else return Order(SL(n, Integers mod k)); fi; end;
    for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
    
  • Mathematica
    T[n_, k_] := If[k == 1 || n == 0, 1, k^(n^2-1) Product[1 - p^-j, {p, FactorInteger[k][[All, 1]]}, {j, 2, n}]];
    Table[T[n-k+1, k], {n, 0, 8}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    T(n,k)={my(f=factor(k)); if(n<1, n==0, k^(n^2-1) * prod(i=1, #f~, my(p=f[i,1]); prod(j=2, n, (1 - p^(-j)))))}

Formula

T(n,p^e) = (p^e)^(n^2-1) * Product_{j=2..n} (1 - 1/p^j) for prime p, n > 0.

A003800 Order of universal Chevalley group A_2 (q), q = prime power.

Original entry on oeis.org

168, 5616, 60480, 372000, 5630688, 16482816, 42456960, 212427600, 810534816, 4277145600, 6950204928, 16934047920, 78156525216, 152334000000, 282027786768, 499631102880, 851974934400, 1098404364288
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Programs

  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[#, 2] & /@ Select[Range[2, 36], PrimePowerQ] (* Michael De Vlieger, Sep 18 2015 *)

Formula

a(n) = A(A000961(n+1),2) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
Showing 1-10 of 16 results. Next