cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A003927 Order of simple Chevalley group B_n (3).

Original entry on oeis.org

25920, 4585351680, 65784756654489600, 76457792934119864313446400, 7197966128645938515382156481789952000, 54888780931741129517511777421088069718405808128000
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}] / GCD[2, q-1]; Table[b[3, n], {n, 2, 7}] (* Amiram Eldar, Jun 23 2025 *)

Formula

a(n) = b(3,n) where b(q,n) = q^(n^2) * Product_{k=1..n}(q^(2*k)-1) / gcd(2, q-1). - Sean A. Irvine, Sep 22 2015
a(n) = A003920(n) / 2. - Amiram Eldar, Jun 23 2025
a(n) ~ c * 3^(2*n^2+n), where c = A132037. - Amiram Eldar, Jul 09 2025

A071302 a(n) = (1/2) * (number of n X n 0..2 matrices M with MM' mod 3 = I, where M' is the transpose of M and I is the n X n identity matrix).

Original entry on oeis.org

1, 4, 24, 576, 51840, 13063680, 9170703360, 19808719257600, 131569513308979200, 2600339861038664908800, 152915585868239728626892800, 27051378802435080953011843891200, 14395932257291877030764312963579904000
Offset: 1

Views

Author

R. H. Hardin, Jun 11 2002

Keywords

Comments

Also, number of n X n orthogonal matrices over GF(3) with determinant 1. - Max Alekseyev, Nov 06 2022

Examples

			From _Petros Hadjicostas_, Dec 17 2019: (Start)
For n = 2, the 2*a(2) = 8 n X n matrices M with elements in {0, 1, 2} that satisfy MM' mod 3 = I are the following:
(a) With 1 = det(M) mod 3:
[[1,0],[0,1]];  [[0,1],[2,0]]; [[0,2],[1,0]]; [[2,0],[0,2]].
This is the abelian group SO(2, Z_3). See the comments for sequence A060968.
(b) With 2 = det(M) mod 3:
[[0,1],[1,0]];  [[0,2],[2,0]]; [[1,0],[0,2]]; [[2,0],[0,1]].
Note that, for n = 3, we have 2*a(3) = 2*24 = 48 = A264083(3). (End)
		

Crossrefs

Programs

  • Mathematica
    FoldList[Times, 1, LinearRecurrence[{3, -3, 9}, {4, 6, 24}, 12]] (* Amiram Eldar, Jun 22 2025 *)
  • PARI
    { a071302(n) = my(t=n\2); prod(i=0,t-1,3^(2*t)-3^(2*i)) * if(n%2,3^t,1/(3^t+(-1)^t)); } \\ Max Alekseyev, Nov 06 2022

Formula

a(2k+1) = 3^k * Product_{i=0..k-1} (3^(2k) - 3^(2i)); a(2k) = (3^k + (-1)^(k+1)) * Product_{i=1..k-1} (3^(2k) - 3^(2i)) (see MacWilliams, 1969). - Max Alekseyev, Nov 06 2022
a(n+1) = a(n) * A318609(n+1) for n >= 1. - conjectured by Petros Hadjicostas, Dec 18 2019; proved based on the explicit formula by Max Alekseyev, Nov 06 2022

Extensions

Terms a(8) onward from Max Alekseyev, Nov 06 2022

A071303 1/2 times the number of n X n 0..3 matrices M with MM' mod 4 = I, where M' is the transpose of M and I is the n X n identity matrix.

Original entry on oeis.org

1, 8, 192, 12288, 1966080, 1509949440, 5411658792960
Offset: 1

Views

Author

R. H. Hardin, Jun 11 2002

Keywords

Comments

It seems that a(n) = n! * 2^(binomial(n+1,2) - 1) for n = 1, 2, 3, 4, 5, while for n = 6, a(n) is twice this number. The number n! * 2^(binomial(n+1,2) - 1) appears in Proposition 6.1 in Eriksson and Linusson (2000) as an upper bound to the number of three-dimensional permutation arrays of size n (see column k = 3 of A330490). - Petros Hadjicostas, Dec 16 2019
a(7) = 7! * 2^30. - Sean A. Irvine, Jul 11 2024

Examples

			From _Petros Hadjicostas_, Dec 16 2019: (Start)
For n = 2, here are the 2*a(2) = 16 2 x 2 matrices M with elements in {0,1,2,3} that satisfy MM'  mod 4 = I:
(a) With 1 = det(M) mod 4:
  [[1,0],[0,1]]; [[0,1],[3,0]]; [[0,3],[1,0]]; [[1,2],[2,1]];
  [[2,1],[3,2]]; [[2,3],[1,2]]; [[3,0],[0,3]]; [[3,2],[2,3]].
These form the abelian group SO(2, Z_n). See the comments for sequence A060968.
(b) With 3 = det(M) mod 4:
  [[0,1],[1,0]]; [[0,3],[3,0]]; [[1,0],[0,3]];  [[1,2],[2,3]];
  [[2,1],[1,2]]; [[2,3],[3,2]]; [[3,0],[0,1]];  [[3,2],[2,1]].
Note that, for n = 3, we have 2*a(3) = 2*192 = 384 = A264083(4). (End)
		

Crossrefs

Extensions

a(7) from Sean A. Irvine, Jul 11 2024

A003931 Order of universal Chevalley group B_2(q), q = prime power.

Original entry on oeis.org

720, 51840, 979200, 9360000, 276595200, 1056706560, 3443212800, 25721308800, 137037962880, 1095199948800, 2008994088960, 6114035779200, 41348052472320, 95214600000000, 205608315669120, 420206392771200, 818774509363200, 1124799322521600, 4805069329111680, 13414669637644800
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [#SymplecticGroup(4,q) : q in [2..50] | IsPrimePower(q)];  // Robin Visser, Aug 06 2023
  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 2], {q, Select[Range[50], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = B(A000961(n + 1), 2) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015

Extensions

More terms from Robin Visser, Aug 06 2023

A003932 Order of universal Chevalley group B_3(q), q = prime power.

Original entry on oeis.org

1451520, 9170703360, 4106059776000, 457002000000000, 546914437209907200, 9077005607176765440, 108051462804999168000, 7338585441586912128000, 245593958671812227742720, 19266960106724096212992000, 68852034247000426560552960, 712225595693024258315904000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [#SymplecticGroup(6, q) : q in [2..50] | IsPrimePower(q)];  // Robin Visser, Aug 07 2023
  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 3], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = B(A000961(n + 1), 3) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015

Extensions

More terms from Robin Visser, Aug 07 2023

A003937 Order of universal Chevalley group B_8(q), q = prime power.

Original entry on oeis.org

59980383884075203672726385914533642240000, 67806677896800158816511248022114282163091244291914415200010240000, 7084630453281025440882493116981310890142026281589018852388680249504694272000000000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 8], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = B(A000961(n + 1), 8) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015

Extensions

a(3) from Sean A. Irvine, Sep 22 2015

A003923 Order of universal Chevalley group B_n (2) or symplectic group Sp(2n,2).

Original entry on oeis.org

1, 6, 720, 1451520, 47377612800, 24815256521932800, 208114637736580743168000, 27930968965434591767112450048000, 59980383884075203672726385914533642240000, 2060902435720151186326095525680721766346957783040000, 1132992015386677099994486205757869431795095310094129168384000000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

A bisection of A003053.

Programs

  • Maple
    for m from 0 to 50 do N:=2^(m^2)*mul( 4^i-1, i=1..m); lprint(N); od:
  • Mathematica
    a[n_] := 2^(n^2)*Times@@(4^Range[n]-1);
    Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Aug 18 2022 *)
  • Python
    from math import prod
    def A003923(n): return (1 << n**2)*prod((1 << i)-1 for i in range(2,2*n+1,2)) # Chai Wah Wu, Jun 20 2022

Formula

a(n) = B(2,n) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015
a(n) ~ c * 2^(n*(2*n+1)), where c = A100221. - Amiram Eldar, Jul 07 2025

Extensions

Edited by N. J. A. Sloane, Dec 30 2008

A003933 Order of universal Chevalley group B_4(q), q = prime power.

Original entry on oeis.org

47377612800, 131569513308979200, 4408780839651901440000, 13946558535000000000000000, 2596509480922336727312302080000, 319368723699461283992462111539200, 22246837484597339860644476682240000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 4], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = B(A000961(n + 1), 4) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015

Extensions

a(7) from Sean A. Irvine, Sep 22 2015

A003934 Order of universal Chevalley group B_5(q), q = prime power.

Original entry on oeis.org

24815256521932800, 152915585868239728626892800, 1211875293642881119668928512000000, 266009466302345390625000000000000000000, 29597339316082819652234687848790174733434880000, 46025883638628966977843321053405598530493271244800
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 5], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = B(A000961(n + 1), 5) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015

Extensions

a(5)-a(6) from Sean A. Irvine, Sep 22 2015

A003935 Order of universal Chevalley group B_6(q), q = prime power.

Original entry on oeis.org

208114637736580743168000, 14395932257291877030764312963579904000, 85278137430613949474674174708223909560320000000, 3171079936179764469273010253906250000000000000000000000
Offset: 1

Views

Author

Keywords

References

  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.

Crossrefs

Programs

  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 6], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = B(A000961(n + 1), 6) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015
Showing 1-10 of 16 results. Next