A003991 Multiplication table read by antidiagonals: T(i,j) = i*j, i>=1, j>=1.
1, 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 5, 6, 10, 12, 12, 10, 6, 7, 12, 15, 16, 15, 12, 7, 8, 14, 18, 20, 20, 18, 14, 8, 9, 16, 21, 24, 25, 24, 21, 16, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12
Offset: 1
Examples
The array T starts in row n=1 with columns m>=1 as: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 The triangle X(n, m) begins n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1: 1 2: 2 2 3: 3 4 3 4: 4 6 6 4 5: 5 8 9 8 5 6: 6 10 12 12 10 6 7: 7 12 15 16 15 12 7 8: 8 14 18 20 20 18 14 8 9: 9 16 21 24 25 24 21 16 9 10: 10 18 24 28 30 30 28 24 18 10 11: 11 20 27 32 35 36 35 32 27 20 11 12: 12 22 30 36 40 42 42 40 36 30 22 12 13: 13 24 33 40 45 48 49 48 45 40 33 24 13 14: 14 26 36 44 50 54 56 56 54 50 44 36 26 14 15: 15 28 39 48 55 60 63 64 63 60 55 48 39 28 15 ... Formatted by _Wolfdieter Lang_, Dec 02 2014
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 46.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 5-6.
Links
- T. D. Noe, Rows n = 1..100 of triangle, flattened
- Iva Kodrnja and Helena Koncul, Number of Polynomials Vanishing on a Basis of S_m(Gamma_0(N)), arXiv:2405.10747 [math.NT], 2024. See p. 10.
- G. W. Leibniz, Dissertatio de arte combinatoria, 1666, Leipzig. (in Latin. This triangle appears on p. 208, page 44 of the PDF file).
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, 9 no. 2 (1997), p. 319-335.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
Crossrefs
Programs
-
Magma
/* As triangle */ [[k*(n-k+1): k in [1..n]]: n in [1..15]]; // Vincenzo Librandi, Jul 12 2019
-
Maple
seq(seq(i*(n-i),i=1..n-1),n=2..10); # Robert Israel, Dec 14 2015
-
Mathematica
Table[(x + 1 - y) y, {x, 13}, {y, x}] // Flatten (* Robert G. Wilson v, Oct 06 2007 *) f[n_] := Table[SeriesCoefficient[E^(x + y) (1+ x - y +x*y-y^2), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11,0]] (* Stefano Spezia, Jul 12 2019 *)
-
PARI
A003991(n,k) = if(k<1 || n<1,0,k*n)
Formula
Rectangular array: T(n, m) = n*m, n>=1, m>= 1.
Triangle X(n, m) = T(n-m+1, m) = (n-m+1)*m.
Sum_{i=1..n} Sum_{j=1..n} a(n) = A000537(n) [Sum of first n cubes; or n-th triangular number squared.] Determinant of all n X n contiguous subarrays of A003991 is 0. - Gerald McGarvey, Sep 26 2004
G.f. as rectangular array: x*y/((1 - x)^2*(1 - y)^2).
a(n) = i*j, where i=floor((1+sqrt(8n-7))/2), j=n-i*(i-1)/2. - Hieronymus Fischer, Aug 08 2007
As an infinite lower triangular matrix equals A000012 * A002260; where A000012 = (1; 1,1; 1,1,1; ...) and A002260 = (1; 1,2; 1,2,3; ...). - Gary W. Adamson, Oct 23 2007
As a linear array, the sequence is a(n) = A002260(n)*A004736(n) or a(n) = ((t*t+3*t+4)/2-n)*(n-(t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012
G.f. as linear array: (x - 3*x^2 + Sum_{k >= 0} ((k+2-x-(k+1)*x^2)*x^((k^2+3*k+4)/2)))/(1-x)^3. - Robert Israel, Dec 14 2015
E.g.f. as triangle: exp(x+y)*(1 + x - y + x*y - y^2). - Stefano Spezia, Jul 12 2019
a(n) = (1/2)*t + (n - 1/4)*t^2 - (1/4)*t^4 - n^2 + n, where t = floor(sqrt(2*n) + 1/2). - Ridouane Oudra, Nov 21 2020
a(n) = A003989(n) * A003990(n) = A059895(n) * A059896(n) = A059895(n)^2 * A059897(n). - Antti Karttunen, Dec 13 2021
T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x < y < z. - Clark Kimberling, Jan 22 2024
E.g.f. as rectangular array: x*y*exp(x+y). - Stefano Spezia, Jun 27 2025
Extensions
More terms from Michael Somos
Comments