A004125 Sum of remainders of n mod k, for k = 1, 2, 3, ..., n.
0, 0, 1, 1, 4, 3, 8, 8, 12, 13, 22, 17, 28, 31, 36, 36, 51, 47, 64, 61, 70, 77, 98, 85, 103, 112, 125, 124, 151, 138, 167, 167, 184, 197, 218, 198, 233, 248, 269, 258, 297, 284, 325, 328, 339, 358, 403, 374, 414, 420, 449, 454, 505, 492, 529, 520, 553, 578, 635, 586, 645, 672
Offset: 1
Examples
a(5) = 4. The remainder when 5 is divided by 2,3,4 respectively is 1,2,1 and their sum = 4.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..2000 (first 1000 terms from T. D. Noe)
- Jeffrey Shallit, Problem E2817, Amer. Math. Monthly, vol. 87, p 137, 1980.
Crossrefs
Programs
-
GAP
List([1..70],n->n^2-Sum([1..n],k->Sigma(k))); # Muniru A Asiru, Mar 28 2018
-
Haskell
a004125 n = sum $ map (mod n) [1..n] -- Reinhard Zumkeller, Jan 28 2011
-
Magma
[&+[n mod r: r in [1..n]]: n in [1..70]]; // Bruno Berselli, Jul 06 2014
-
Maple
A004125 := n -> add( modp(n,k), k=2..n); /* much faster and unambiguous; "a mod b" may be mods(a,b) */ # M. F. Hasler, Nov 22 2007
-
Mathematica
Table[Sum[Mod[n,k],{k,2,n-1}],{n,70}] (* Harvey P. Dale, Nov 23 2011 *) Accumulate[Table[2n-1-DivisorSigma[1,n],{n,70}]] (* Harvey P. Dale, Jul 11 2014 *)
-
PARI
A004125(n)=sum(k=2,n,n%k) \\ M. F. Hasler, Nov 22 2007
-
Python
def a(n): return sum(n%k for k in range(1, n)) print([a(n) for n in range(1, 63)]) # Michael S. Branicky, Jun 08 2021
-
Python
from math import isqrt def A004125(n): return n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 21 2023
-
SageMath
def a(n): return sum(n.mod(k) for k in (1..n)) print([a(n) for n in (1..62)]) # Peter Luschny, May 12 2025
Formula
a(n) = n^2 - Sum_{k=1..n} sigma(k) = A000290(n) - A024916(n), hence asymptotically a(n) = n^2*(1-Pi^2/12) + O(n*log(n)^(2/3)). - Benoit Cloitre, Apr 28 2002. Asymptotics corrected/improved by Charles R Greathouse IV, Feb 22 2015
G.f.: x^2/(1-x)^3 - (1-x)^(-1) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - Robert Israel, Aug 13 2015
a(n) = Sum_{i=1..n} (n mod i). - Wesley Ivan Hurt, Sep 15 2017
From Ridouane Oudra, May 12 2025: (Start)
a(n) = Sum_{d|n} d*A067439(n/d).
a(p) = A067439(p), for p prime.
a(p^k) = A072514(p^(k+1))/p, for p prime and k >= 0. (End)
a(n) = A111490(n) - n. - Peter Luschny, May 12 2025
Extensions
Edited by M. F. Hasler, Apr 18 2015
Comments