cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004442 Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.

Original entry on oeis.org

1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30, 33, 32, 35, 34, 37, 36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52, 55, 54, 57, 56, 59, 58, 61, 60, 63, 62, 65, 64, 67, 66, 69
Offset: 0

Views

Author

Keywords

Comments

A self-inverse permutation of the natural numbers.
Nonnegative numbers rearranged with least disturbance to maintain a(n) not equal to n. - Amarnath Murthy, Sep 13 2002
Essentially lodumo_2 of A059841. - Philippe Deléham, Apr 26 2009
a(n) = A180176(n) for n >= 20. - Reinhard Zumkeller, Aug 15 2010

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    import Data.Bits (xor)
    a004442 = xor 1 :: Integer -> Integer
    a004442_list = concat $ transpose [a005408_list, a005843_list]
    -- Reinhard Zumkeller, Jun 23 2013, Feb 01 2013, Oct 20 2011
    
  • Maple
    a[0]:=1:a[1]:=0:for n from 2 to 70 do a[n]:=a[n-2]+2 od: seq(a[n], n=0..68); # Zerinvary Lajos, Feb 19 2008
  • Mathematica
    Table[n + (-1)^n, {n, 0, 72}] (* or *)
    CoefficientList[Series[(1 - x + 2x^2)/((1 - x)(1 - x^2)), {x, 0, 72}], x] (* Robert G. Wilson v, Jun 16 2006 *)
    Flatten[Reverse/@Partition[Range[0,69],2]] (* or *) LinearRecurrence[{1,1,-1},{1,0,3},70] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    a(n)=n+(-1)^n \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    Vec((1-x+2*x^2)/((1-x)*(1-x^2)) + O(x^100)) \\ Altug Alkan, Feb 04 2016
    
  • Python
    def a(n): return n^1
    print([a(n) for n in range(69)]) # Michael S. Branicky, Jan 23 2022

Formula

a(n) = n XOR 1. - Odimar Fabeny, Sep 05 2004
G.f.: (1-x+2x^2)/((1-x)*(1-x^2)). - Mitchell Harris, Jan 10 2005
a(n+1) = lod_2(A059841(n)). - Philippe Deléham, Apr 26 2009
a(n) = 2*n - a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{k=1..n-1} (-1)^(n-1-k)*C(n+1,k). - Mircea Merca, Feb 07 2013
For n > 1, a(n)^a(n) == 1 (mod n). - Thomas Ordowski, Jan 04 2016
Sum_{n>=0,n<>1} (-1)^n/a(n) = log(2) = A002162. - Peter McNair, Aug 07 2023

Extensions

Offset adjusted by Reinhard Zumkeller, Mar 05 2010