A004772 Numbers that are not congruent to 1 (mod 4).
0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n: n in [0..100] | not n mod 4 eq 1 ]; // Vincenzo Librandi, Mar 09 2014
-
Magma
[(4*n-2) div 3: n in [1..100]]; // Bruno Berselli, Dec 06 2016
-
Maple
seq(seq(4*i+j,j=[0,2,3]),i=0..100); # Robert Israel, Sep 01 2015
-
Mathematica
LinearRecurrence[{1,0,1,-1},{0,2,3,4},68] (* Ant King, Oct 19 2012 *) DeleteCases[Range[0,90],?(Mod[#,4]==1&)] (* _Harvey P. Dale, Jun 11 2013 *) CoefficientList[Series[x (2 + x + x^2)/((1 + x + x^2) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 08 2014 *)
-
PARI
a(n) = (4*n-2)\3; \\ Michel Marcus, Sep 03 2015
Formula
G.f.: x^2*(2 + x + x^2)/((1 + x + x^2)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
a(n) = floor((4*n-2)/3). - Gary Detlefs, Jan 02 2012
a(n) = n + ceiling((n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
From Ant King, Oct 19 2012: (Start)
a(n) = 4 + a(n-3).
a(n) = (12*n -9 - 3*cos(2*(n-1)*Pi/3) + sqrt(3)*sin(2*(n-1)*Pi/3))/9. (End)
a(n) = ceiling(4*(n-1)/3). - Jean-François Alcover, Mar 07 2014
Sum_{n>=2} (-1)^n/a(n) = log(sqrt(2)+2)/(2*sqrt(2)) + (2-sqrt(2))*log(2)/8 - (sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 05 2021
a(n) = A042965(n+1)-1. - R. J. Mathar, Mar 04 2025
Extensions
Corrected by Michael Somos, Jun 08 2000
Comments