A004798 Convolution of Fibonacci numbers 1,2,3,5,... with themselves.
1, 4, 10, 22, 45, 88, 167, 310, 566, 1020, 1819, 3216, 5645, 9848, 17090, 29522, 50793, 87080, 148819, 253610, 431086, 731064, 1237175, 2089632, 3523225, 5930668, 9968122, 16730830, 28045221, 46954360, 78524159, 131181406, 218933030, 365044788, 608135635, 1012268592
Offset: 1
Examples
a(6) = 45 + 22 + A000045(6+2) = 45 + 22 + 21 = 88. - _Philippe Deléham_, Jan 22 2012
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Bridget Eileen Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
GAP
List([1..40], n-> (n*Lucas(1,-1,n+3)[2] - 2*Fibonacci(n))/5); # G. C. Greubel, Jul 07 2019
-
Magma
I:=[1,4,10,22]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 08 2018
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n. <<0, 1, 4, 10>>)[1, 1]: seq(a(n), n=1..40); # Alois P. Heinz, Jul 04 2013 # Alternative: a := n -> n*(hypergeom([-(n+1)/2,-n/2],[-n-1],-4) - hypergeom([(1-n)/2,1-n/2],[-n], -4)): seq(simplify(a(n)), n=1..40); # Peter Luschny, Apr 10 2018
-
Mathematica
nn=40; Drop[CoefficientList[Series[D[(1+x)/(1-y x -y x^2),y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Jul 22 2013 *) Table[n Fibonacci[n] + 2/5 (n LucasL[n] - Fibonacci[n]), {n, 40}] (* Vladimir Reshetnikov, Sep 27 2016 *) a[n_] := ListConvolve[f = Fibonacci[Range[2, n+1]], f][[1]]; Array[a, 40] (* Jean-François Alcover, Feb 15 2018 *) LinearRecurrence[{2, 1, -2, -1}, {1, 4, 10, 22}, 40] (* Vincenzo Librandi, Apr 08 2014 *)
-
PARI
Vec(((1+x)/(1-x-x^2))^2+O(x^66)) \\ Joerg Arndt, Jul 04 2013
-
Sage
[(n*lucas_number2(n+3,1,-1) - 2*fibonacci(n))/5 for n in (1..40)] # G. C. Greubel, Jul 07 2019
Formula
O.g.f.: (x+1)^2*x/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = a(n-1) + a(n-2) + Fibonacci(n+2). - Philippe Deléham, Jan 22 2012
O.g.f. is the derivative of A(x,y) with respect to y and then evaluated at y = 1, where A(x,y) is the o.g.f. for A030528. - Geoffrey Critzer, Jul 22 2013
a(n) = n*Fibonacci(n) + (2/5)*(n*Lucas(n) - Fibonacci(n)) = A045925(n) + 2*A001629(n), where Lucas = A000032, Fibonacci = A000045. - Vladimir Reshetnikov, Sep 27 2016
a(n) = Sum_{i=0..floor((n+1)/2)} binomial(n+1-i,i)*(n-i). - John M. Campbell, Apr 07 2018
From Peter Luschny, Apr 10 2018: (Start)
a(n) = n*(hypergeom([-(n+1)/2, -n/2], [-n - 1], -4) - hypergeom([(1-n)/2, 1 - n/2], [-n], -4)).
E.g.f.: exp(x/2)*(35*x*cosh(sqrt(5)*x/2) + sqrt(5)*(15*x - 4)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023
Comments