cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005059 a(n) = (5^n - 3^n)/2.

Original entry on oeis.org

0, 1, 8, 49, 272, 1441, 7448, 37969, 192032, 966721, 4853288, 24325489, 121804592, 609554401, 3049366328, 15251614609, 76272421952, 381405156481, 1907154922568, 9536162033329, 47681972428112, 238413348924961, 1192077204978008, 5960417405949649, 29802181172927072
Offset: 0

Views

Author

Keywords

Comments

Number of lines passing through 3 points of an n-dimensional grid of points of side 3. - David W. Wilson, c. 1999
a(n) is also the total number of words of length n, over an alphabet of five letters, one of them appearing an odd number of times. See the Lekraj Beedassy, Jul 22 2003, comment under A006516 (4-letter words), and the Balakrishnan reference there. See A003462 for the analogous 3-letter words problem. - Wolfdieter Lang, Jul 16 2017

Examples

			For the fifth formula: a(4) = 1*125 + 3*25 + 9*5 + 27*1 = 272. [_Bruno Berselli_, Aug 07 2013]
		

Crossrefs

Cf. A081199 (binomial transform), A006516 (inverse binomial transform, and special 4-letter words), A003462 (special 3-letter words).

Programs

Formula

From Paul Barry, Mar 03 2003: (Start)
a(n) = 8*a(n-1) - 15*a(n-2).
G.f.: x/((1-3*x)*(1-5*x)). (End)
a(n) = Sum_{k=1..n} 2^(k-1)*3^(n-k)*binomial(n,k). - Zerinvary Lajos, Sep 24 2006
a(n) = (r^n-s^n)/(r-s) with r=5 and s=3. - Sture Sjöstedt, Oct 17 2012
a(n) = Sum_{k=0..n-1} 3^k*5^(n-k-1) for n>0, a(0)=0. - Bruno Berselli, Aug 07 2013
E.g.f.: exp(3*x)*(exp(2*x) - 1)/2. - Stefano Spezia, Jul 23 2024