cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096766 Difference between ceiling(e^(n/2 - 1)) (A005181) and the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 12, 27, 56, 110, 212, 397, 734, 1339, 2414, 4316, 7659, 13507, 23691, 41362, 71920, 124603, 215188, 370565, 636491, 1090709, 1865121, 3183224, 5423255, 9224601, 15666968, 26571801, 45009002, 76148146, 128687426
Offset: 0

Views

Author

Robert G. Wilson v, Jul 08 2004

Keywords

Crossrefs

Programs

  • Maple
    with (combinat): seq(round(ceil(exp((n/2)-1)))-fibonacci(n), n=0..50); # Vladimir Pletser Sep 15 2013
  • Mathematica
    Table[ Ceiling[E^(n/2 - 1)] - Fibonacci[n], {n, 0, 41}]

Formula

A005181(n+1) - A000045(n).

A229194 Integers nearest to (2^((n-3)/2) + 3^((n-3)/2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 21, 35, 58, 97, 163, 275, 466, 793, 1353, 2315, 3969, 6817, 11726, 20195, 34816, 60073, 103724, 179195, 309724, 535537, 926275, 1602515, 2773034, 4799353, 8307516, 14381675, 24899377, 43112257, 74651790, 129271235, 223862687, 387682633, 671402698, 1162785755, 2013837368, 3487832977, 6040770648, 10462450355, 18120829034, 31385253913, 54359521280, 94151567435, 163072632198
Offset: 0

Views

Author

Vladimir Pletser, Sep 15 2013

Keywords

Comments

This sequence illustrates the second law of small numbers because it is a coincidence that the terms for 1 <= n <= 8 are the same as the Fibonacci numbers F(n) (A000045): a(n) = F(n) for 1 <= n <= 8.
Furthermore, the following terms are the sum of two Fibonacci numbers: a(9) = F(9) + F(2), a(10) = F(10) + F(4), a(11) = F(11) + F(6), a(14) = F(14) + F(11); or the algebraic sum of three Fibonacci numbers: a(12) = F(12) + F(8) - F(3), a(13) = F(13) + F(10) - F(7), a(14) = F(14) + F(12) - F(10), a(18) = F(19) - F(13) - F(8), a(19) = F(20) + F(10) - F(4); or the algebraic sum of four Fibonacci numbers: a(15) = F(15) + F(12) + F(9) + F(5), a(16) = F(16) + F(14) - F(6) - F(4), a(17) = F(18) - F(13) - F(9) - F(3), a(18) = F(18) + F(16) + F(14) + F(8), a(19) = F(19) + F(18) + F(10) - F(3).
Note that, for following values of n, a(n) > F(n+1) for n >= 20.
Remark as well that (2^(1/2) + 3^(1/2)) = 3.14626437... ~= Pi (see A135611).

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, Wiley-Interscience, 2001
  • I. Stewart, L'univers des nombres, Belin-Pour La Science, Paris 2000.

Crossrefs

Programs

  • Magma
    [Round(2^((n-3)/2) + 3^((n-3)/2)): n in [0..50]]; // Vincenzo Librandi, Sep 20 2013
  • Maple
    seq(round(2^((n-3)/2)+3^((n-3)/2)), n=0..50);
  • Mathematica
    Table[Round[2^((n - 3)/2) + 3^((n - 3)/2)], {n, 0, 50}] (* Vincenzo Librandi, Sep 20 2013 *)

Formula

a(n) = round(2^((n-3)/2) + 3^((n-3)/2)).

A214076 a(n) = ceiling(e^(n/3)).

Original entry on oeis.org

2, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, 77, 107, 149, 208, 290, 404, 564, 786, 1097, 1531, 2136, 2981, 4161, 5807, 8104, 11309, 15783, 22027, 30741, 42902, 59875, 83562, 116619, 162755, 227143, 317004, 442414, 617438
Offset: 1

Views

Author

Mohammad K. Azarian, Jul 02 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 60, LOOP(IF(n = 0, RETURN y), y := ADJOIN(CEILING(ê^(n/3)), y), n := n - 1))
    
  • Magma
    [Ceiling(Exp(n)^(1/3)): n in [1..50]]; // Vincenzo Librandi, Feb 13 2013
    
  • Maple
    A214076:=n->ceil(exp(n/3)): seq(A214076(n), n=1..60); # Wesley Ivan Hurt, Jan 11 2016
  • Mathematica
    Ceiling[E^(Range[40]/3)] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    a(n) = ceil(exp(n/3)); \\ Michel Marcus, Jan 11 2016

A214077 a(n) = floor(e^(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 39, 54, 76, 106, 148, 207, 289, 403, 563, 785, 1096, 1530, 2135, 2980, 4160, 5806, 8103, 11308, 15782, 22026, 30740, 42901, 59874, 83561, 116618, 162754, 227142, 317003, 442413, 617437
Offset: 1

Views

Author

Mohammad K. Azarian, Jul 02 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 60, LOOP(IF(n = 0, RETURN y), y := ADJOIN(FLOOR(ê^(n/3)), y), n := n - 1))
    
  • Magma
    [Floor(Exp(n)^(1/3)): n in [1..50]]; // Vincenzo Librandi, Feb 13 2013
    
  • Maple
    A214077:=n->floor(exp(n/3)): seq(A214077(n), n=1..60); # Wesley Ivan Hurt, Jan 11 2016
  • Mathematica
    Floor[E^(Range[50]/3)] (* Vincenzo Librandi, Feb 13 2013 *)
  • PARI
    a(n) = floor(exp(n/3)); \\ Michel Marcus, Jan 11 2016

A306486 Number of squares in the interval [e^(n-1), e^n).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 36, 58, 96, 159, 262, 431, 712, 1172, 1934, 3189, 5256, 8667, 14289, 23559, 38841, 64039, 105583, 174076, 287003, 473188, 780155, 1286258, 2120681, 3496412, 5764609, 9504233, 15669832, 25835185, 42595018, 70227313, 115785266
Offset: 0

Views

Author

Alexei Kourbatov, Feb 18 2019

Keywords

Comments

The lower endpoint e^(n-1) is included; the upper endpoint is not included. The terms a(0) to a(8) coincide with the Fibonacci numbers.

Examples

			Between exp(2) and exp(3) there are two squares, namely, 9 and 16; therefore, a(3)=2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n)-f(n-1))(i-> ceil(exp(i/2))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 18 2019
  • PARI
    a(n)=ceil(sqrt(exp(n)))-ceil(sqrt(exp(n-1)));
    for(n=0,50,print1(a(n)", "))

Formula

a(n) = ceiling(sqrt(exp(n))) - ceiling(sqrt(exp(n-1))).
From Alois P. Heinz, Feb 19 2019: (Start)
Lim_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774.
a(n) = A005181(n+1) - A005181(n). (End)
a(n) = (1-1/sqrt(e))*e^(n/2)+O(1) ~ 0.39346934...*e^(n/2) ~ A290506*e^(n/2). - Alexei Kourbatov, Feb 20 2019
Showing 1-5 of 5 results.