cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005246 a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 153, 362, 571, 1351, 2131, 5042, 7953, 18817, 29681, 70226, 110771, 262087, 413403, 978122, 1542841, 3650401, 5757961, 13623482, 21489003, 50843527, 80198051, 189750626, 299303201, 708158977, 1117014753
Offset: 0

Views

Author

Keywords

Comments

For n >= 4 we have the linear recurrence a(n) = 4*a(n-2) - a(n-4). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 04 2001
Integer solutions to the equation floor(sqrt(3)*x^2) = x*floor(sqrt(3)*x). - Benoit Cloitre, Mar 18 2004
For n > 2, a(n) is the smallest integer > a(n-1) such that sqrt(3)*a(n) is closer to and greater than an integer than sqrt(3)*a(n-1). I.e., a(n) is the smallest integer > a(n-1) such that frac(sqrt(3)*a(n)) < frac(sqrt(3)*a(n-1)). - Benoit Cloitre, Jan 20 2003
The lower principal and intermediate convergents to 3^(1/2), beginning with 1/1, 3/2, 5/3, 12/7, 19/11, form a strictly increasing sequence; essentially, numerators=A143643 and denominators=A005246. - Clark Kimberling, Aug 27 2008
This sequence is a particular case of the following situation: a(0)=1, a(1)=a, a(2)=b with the recurrence relation a(n+3)=(a(n+2)*a(n+1)+q)/a(n) where q is given in Z to have Q=(a*b^2+q*b+a+q)/(a*b) itself in Z. The g.f. is f: f(z)=(1+a*z+(b-Q)*z^2+(a*b+q-a*Q)*z^3)/(1-Q*z^2+z^4); so we have the linear recurrence: a(n+4)=Q*a(n+2)-a(n). The general form of a(n) is given by: a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (b-Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p) and a(2*m+1) = a*Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (a*b+q-a*Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p). - Richard Choulet, Feb 24 2010
a(n) for n > 1 are the integer square roots of (floor(m^2/3)+1), where the values of m are given by A143643. Also see A082630. - Richard R. Forberg, Nov 14 2013
The a(n) = (1 + a(n-1)*a(n-2))/a(n-3) recursion has the Laurent property. If a(0), a(1), a(2) are variables, then a(n) is a Laurent polynomial (a rational function with a monomial denominator). - Michael Somos, Feb 27 2019

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 11*x^6 + 26*x^7 + 41*x^8 + ...
From _Richard Choulet_, Feb 24 2010: (Start)
a(4) = 4^2 - 4^0 - 3*4^1 = 3.
a(7) = 4^3 - 4*binomial(2,1) - 2*(4^2-1) = 26. (End)
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A001835 and A001075.
Cf. A101265. Row sums of A211956.
Cf. A001353.

Programs

  • Haskell
    a005246 n = a005246_list !! n
    a005246_list = 1 : 1 : 1 : map (+ 1) (zipWith div
       (zipWith (*) (drop 2 a005246_list) (tail a005246_list)) a005246_list)
    -- Reinhard Zumkeller, Mar 07 2012
  • Maple
    A005246:=-(-1-z+2*z**2+z**3)/(1-4*z**2+z**4); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for one of the leading 1's.
    for q from 1 to 10 do :a:=1:b:=1:Q:=(a*b^2+q*b+a+q)/(a*b): for m from 0 to 15 do U(m):=sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od: for m from 0 to 15 do V(m):=a*sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od:for m from 0 to 15 do W(2*m):=U(m):od:for m from 0 to 14 do W(2*m+1):=V(m):od:seq(W(m),m=0..30):od; # Richard Choulet, Feb 24 2010
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(1+a[n-1]a[n-2])/a[n-3]},a,{n,40}] (* Harvey P. Dale, May 28 2013 *)
    a[n_] := Cosh[(n-1)*ArcSinh[1/Sqrt[2]]]*If[EvenQ[n], Sqrt[2/3], 1]; Table[a[n] // FunctionExpand, {n, 0, 34}] (* Jean-François Alcover, Dec 10 2014, after Peter Bala *)
    a[ n_] := With[{m = If[ n < 0, 2 - n, n]}, SeriesCoefficient[ (1 + x - 3 x^2 - 2 x^3) / (1 - 4 x^2 + x^4), {x, 0, m}]]; (* Michael Somos, Feb 10 2017 *)
  • PARI
    {a(n) = if( n<0, n = 2 - n); polcoeff((1 + x - 3*x^2 - 2*x^3) / (1 - 4*x^2 + x^4) + x * O(x^n), n)}; /* Michael Somos, Nov 15 2006 */
    
  • PARI
    {a(n) = real( (2 + quadgen(12))^(n\2) * if( n%2, 1, 1 - 1 / quadgen(12)) )}; /* Michael Somos, May 24 2012 */
    

Formula

G.f.: (1 + x - 3*x^2 - 2*x^3)/(1 - 4*x^2 + x^4).
Limit_{n->oo} a(2n+1)/a(2n) = (3+sqrt(3))/3 = 1.5773502...; lim_{n->oo} a(2n)/a(2n-1) = (3+sqrt(3))/2 = 2.3660254.... - Benoit Cloitre, Aug 07 2002
A101265(n) = a(n)*a(n+1). - Franklin T. Adams-Watters, Apr 24 2006
a(n) = a(2-n) for all n in Z. - Michael Somos, Nov 15 2006
a(2*n + 1) = A001075(n). a(2*n) = A001835(n). a(2*n + 1) - a(2*n) = a(2*n + 2) - a(2*n + 1) = A001353(n). - Michael Somos, May 24 2012
For n > 2: a(n) = a(n-1) + Sum_{k=1..floor((n-1)/2)} a(2*k). - Reinhard Zumkeller, Dec 16 2007
From Richard Choulet, Feb 24 2010: (Start)
a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*4^(m-2*p) - 3*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*4^(m-1-2*p).
a(2*m+1) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*4^(m-2*p) - 2*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*4^(m-1-2*p). (End)
From Tim Monahan, Jul 01 2011: (Start)
Closed form without extra leading 1: ((sqrt(6)+3)*(sqrt(2+sqrt(3))^n+(sqrt(2-sqrt(3))^n))+(3-sqrt(6))*((-sqrt(2+sqrt(3)))^n+(-sqrt(2-sqrt(3)))^n))/12.
Closed form with extra leading 1: ((6+3*sqrt(6)-2*sqrt(3)-3*sqrt(2))*(sqrt(2+sqrt(3))^n)+(6+3*sqrt(6)+2*sqrt(3)+3*sqrt(2))*(sqrt(2-sqrt(3))^n)+(6-3*sqrt(6)-2*sqrt(3)+3*sqrt(2))*((-sqrt(2+sqrt(3)))^n)+(6-3*sqrt(6)+2*sqrt(3)-3*sqrt(2))*((-sqrt(2-sqrt(3)))^n))/24. (End)
a(2*n+2) = Sum_{k = 0..n} 2^k*binomial(n+k,2*k); a(2*n+1) = Sum_{k = 0..n} n/(n+k)*2^k*binomial(n+k,2*k) for n >= 1. Row sums of A211956. - Peter Bala, May 01 2012
a(n) = ((sqrt(2)+sqrt(3)+(-1)^n*(sqrt(2)-sqrt(3)))*sqrt(2+(2-sqrt(3))^n*(2+ sqrt(3))-(-2+sqrt(3))*(2+ sqrt(3))^n))/(4*sqrt(3)). - Gerry Martens, Jun 06 2015
0 = a(n) - 2*a(n+1) + a(n+2) if n is even, 0 = a(n) - 3*a(n+1) + a(n+2) if n is odd for all n in Z. - Michael Somos, Feb 10 2017

Extensions

More terms from Michael Somos, Aug 01 2001