cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A098574 a(n) = Sum_{k=0..floor(n/7)} C(n-5*k,2*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 38, 51, 71, 102, 149, 218, 316, 452, 639, 897, 1257, 1766, 2493, 3536, 5031, 7165, 10196, 14484, 20538, 29085, 41168, 58282, 82561, 117036, 165995, 235492, 334074, 473824, 671856, 952449, 1350078, 1913702
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-2*x+x^2-x^7))) // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+x^2-x^7), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n-5*k, 2*k)); \\ Michel Marcus, Sep 06 2017
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x+x^2-x^7)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/(1-2*x+x^2-x^7).

A217839 T(n,k)=Number of n element 0..1 arrays with each element the minimum of k adjacent elements of a random 0..1 array of n+k-1 elements.

Original entry on oeis.org

2, 2, 4, 2, 4, 8, 2, 4, 7, 16, 2, 4, 7, 12, 32, 2, 4, 7, 11, 21, 64, 2, 4, 7, 11, 17, 37, 128, 2, 4, 7, 11, 16, 27, 65, 256, 2, 4, 7, 11, 16, 23, 44, 114, 512, 2, 4, 7, 11, 16, 22, 34, 72, 200, 1024, 2, 4, 7, 11, 16, 22, 30, 52, 117, 351, 2048, 2, 4, 7, 11, 16, 22, 29, 42, 81, 189, 616
Offset: 1

Views

Author

R. H. Hardin Oct 12 2012

Keywords

Comments

Table starts
.....2....2....2....2...2...2...2...2...2...2...2...2...2...2
.....4....4....4....4...4...4...4...4...4...4...4...4...4...4
.....8....7....7....7...7...7...7...7...7...7...7...7...7...7
....16...12...11...11..11..11..11..11..11..11..11..11..11..11
....32...21...17...16..16..16..16..16..16..16..16..16..16..16
....64...37...27...23..22..22..22..22..22..22..22..22..22..22
...128...65...44...34..30..29..29..29..29..29..29..29..29..29
...256..114...72...52..42..38..37..37..37..37..37..37..37..37
...512..200..117...81..61..51..47..46..46..46..46..46..46..46
..1024..351..189..126..91..71..61..57..56..56..56..56..56..56
..2048..616..305..194.137.102..82..72..68..67..67..67..67..67
..4096.1081..493..296.205.149.114..94..84..80..79..79..79..79
..8192.1897..798..450.303.218.162.127.107..97..93..92..92..92
.16384.3329.1292..685.443.316.232.176.141.121.111.107.106.106
.32768.5842.2091.1046.644.452.331.247.191.156.136.126.122.121

Examples

			Some solutions for n=8 k=4
..0....0....1....0....1....0....1....1....0....1....0....0....0....0....0....0
..1....1....1....1....0....0....1....1....1....0....0....1....0....1....0....0
..1....1....1....1....0....1....0....1....1....0....1....0....1....0....0....0
..1....1....0....0....0....0....0....0....0....0....1....0....1....0....1....0
..1....1....0....0....0....0....0....0....0....0....1....0....1....0....1....1
..1....1....0....0....0....0....0....0....0....1....1....0....1....0....1....0
..1....0....0....0....0....0....0....0....0....1....1....0....0....1....1....0
..0....0....1....0....1....0....1....0....1....1....1....1....0....1....0....0
		

Crossrefs

Column 2 is A005251(n+3)
Column 3 is A005252(n+3)
Column 4 is A005253(n+3)
Column 5 is A005689(n+6)
Column 6 is A098574(n+6)
Diagonal is A000124

Formula

Empirical for columns 1-7: a(n) = 2*a(n-1) -a(n-2) +a(n-k-1)

A005687 Number of Twopins positions.

Original entry on oeis.org

1, 2, 4, 6, 9, 14, 22, 36, 57, 90, 139, 214, 329, 506, 780, 1200, 1845, 2830, 4337, 6642, 10170, 15572, 23838, 36486, 55828, 85408, 130641, 199814, 305599, 467366, 714735, 1092980, 1671335, 2555650, 3907781, 5975202, 9136288, 13969560, 21359528
Offset: 7

Views

Author

Keywords

References

  • R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= n-> (Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,0,-2,1,2,-2,0,0,0,-1][i] else 0 fi)^n)[1,8]: seq(a(n), n=7..70); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1, 2, -2, 0, 0, 0, -1}, {1, 2, 4, 6, 9, 14, 22, 36, 57, 90}, 40] (* Jean-François Alcover, Nov 12 2015 *)

Formula

G.f.: x^7/((1-x^2-x^5)*(1-2*x+x^2-x^5)). - Simon Plouffe in his 1992 dissertation.
2*a(n) = A005253(n-2) - A005686(n). - R. J. Mathar, May 29 2019

Extensions

More terms from Alois P. Heinz, Aug 14 2008

A098577 a(n) = Sum_{k=0..floor(n/5)} C(n-3*k,2*k) * 2^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 13, 21, 31, 47, 77, 133, 231, 391, 645, 1053, 1727, 2863, 4781, 7989, 13303, 22071, 36565, 60621, 100655, 167295, 278077, 461989, 767143, 1273607, 2114661, 3511869, 5833055, 9688527, 16091213, 26723221, 44378967, 73700823
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1,]; [n le 5 select I[n] else 2*Self(n-1) -Self(n-2) + 2*Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    LinearRecurrence[{2,-1,0,0,2},{1,1,1,1,1},40] (* Harvey P. Dale, Feb 11 2015 *)
    CoefficientList[Series[(1-x)/((1-x)^2-2*x^5), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/((1-x)^2-2*x^5)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/((1-x)^2-2*x^5).
a(n) = a(n-1) - a(n-2) + 2*a(n-5).

A113032 a(n) = Sum_{k=0..floor(n/8)} binomial(n-5*k, 3*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 121, 167, 228, 315, 449, 666, 1023, 1605, 2533, 3974, 6156, 9394, 14137, 21051, 31159, 46066, 68305, 101850, 152857, 230720, 349576, 530476, 804579, 1217951, 1838897, 2769267, 4161918, 6247570, 9375799
Offset: 0

Views

Author

Alexey Kistanov (plast(AT)solid.ru), Jan 05 2006

Keywords

Examples

			a(10+1)=11 because C(10,0) + C(5,3) = 1+10 = 11.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-5*k, 3*k): k in [0..Floor(n/8)]]): n in [0..50]]; // G. C. Greubel, Apr 09 2018
    
  • Mathematica
    Table[Sum[Binomial[n - 5*k, 3*k], {k, 0, Floor[n/8]}], {n, 0, 50}] (* G. C. Greubel, Apr 09 2018 *)
  • PARI
    a(n) = sum(k=0, n\8, binomial(n-5*k, 3*k)); \\ Michel Marcus, Sep 05 2013
    
  • PARI
    lista(nn) = {my(x = xx + O(xx^nn)); gf = (1-x)^2/(1-3*x+3*x^2-x^3-x^8); for (i=0, nn-1, print1(polcoeff(gf, i, xx), ", "));} \\ Michel Marcus, Sep 05 2013
    
  • Sage
    ((1-x)^2/(1-3*x+3*x^2-x^3-x^8)).series(x, 44).coefficients(x, sparse=False) # Stefano Spezia, Aug 19 2023

Formula

G.f.: (1-x)^2/(1-3*x+3*x^2-x^3-x^8). [corrected by Georg Fischer, Apr 17 2020]

Extensions

Corrected by T. D. Noe, Nov 01 2006
More terms from Michel Marcus, Sep 05 2013
Showing 1-5 of 5 results.