A005382 Primes p such that 2p-1 is also prime.
2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, 547, 577, 601, 607, 619, 661, 691, 727, 811, 829, 877, 937, 967, 997, 1009, 1069, 1171, 1237, 1279, 1297, 1399, 1429, 1459, 1531, 1609, 1627, 1657, 1759, 1867, 2011
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 870.
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974
- Ajeet Kumar, Subhamoy Maitra, and Chandra Sekhar Mukherjee, On approximate real mutually unbiased bases in square dimension, Cryptography and Communications (2020) Vol. 13, 321-329.
- Sagar Mandal, Divisibility and Sequence Properties of sigma+ and phi+, arXiv:2508.11660 [math.GM], 2025. See p. 8.
- Marius Tărnăuceanu, Arithmetic progressions in finite groups, arXiv:2003.10060 [math.GR], 2020.
- Wikipedia, Cunningham chain
Crossrefs
Programs
-
Haskell
a005382 n = a005382_list !! (n-1) a005382_list = filter ((== 1) . a010051 . (subtract 1) . (* 2)) a000040_list -- Reinhard Zumkeller, Oct 03 2012
-
Magma
[n: n in [0..1000] | IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Nov 18 2010
-
Maple
f := proc(Q) local t1,i,j; t1 := []; for i from 1 to 500 do j := ithprime(i); if isprime(2*j-Q) then t1 := [op(t1),j]; fi; od: t1; end; f(1); # second Maple program: q:= p-> andmap(isprime, [p, 2*p-1]): select(q, [$2..2500])[]; # Alois P. Heinz, Dec 16 2024
-
Mathematica
Select[Prime[Range[300]], PrimeQ[2#-1]&]
-
PARI
select(p->isprime(2*p-1),primes(500)) \\ Charles R Greathouse IV, Apr 26 2012
-
PARI
forprime(n=2, 10^3, if(ispseudoprime(2*n-1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014
Formula
a(n) = (A005383(n) + 1)/2. - Zak Seidov, Nov 04 2010
Comments