A005385 Safe primes p: (p-1)/2 is also prime.
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2879, 2903, 2963
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. R. Ashrafi and F. Koorepazan-Moftakhar, Towards the Classification of Finite Simple Groups with exactly Three or Four Supercharacter Theories, arXiv preprint arXiv:1605.08971 [math.GR], 2016.
- R. P. Boas & N. J. A. Sloane, Correspondence, 1974.
- Siji Chen and Sheng Chen, Connectedness of digraphs from quadratic polynomials, Involve (2020) Vol. 13, No. 2, 357-360.
- Benoit Cloitre, On the fractal behavior of primes, 2011.
- L. H. Gallardo and O. Rahavandrainy, There are finitely many even perfect polynomials over F_p with p+1 irreducible divisors, Acta Mathematica Universitatis Comenianae, Vol. 83, No. 2, 2016, 261-275.
- David Naccache, Double-Speed Safe Prime Generation, IACR, Report 2003/175, 2003.
- Planetmath, Safe prime.
- Michael J. Wiener, Safe Prime Generation with a Combined Sieve, IACR, Report 2003/186, 2003.
- Wikipedia, Safe prime.
Crossrefs
Programs
-
Haskell
a005385 n = a005385_list !! (n-1) a005385_list = filter ((== 1) . a010051 . (`div` 2)) a000040_list -- Reinhard Zumkeller, Sep 18 2011
-
Magma
[p: p in PrimesUpTo(3000) | IsPrime((p-1) div 2)]; // Vincenzo Librandi, Jul 06 2015
-
Maple
with(numtheory); [ seq(safeprime(i),i=1..3000) ]: convert(%,set); convert(%,list); sort(%); A005385_list := n->select(i->isprime(iquo(i,2)),select(i->isprime(i),[$1..n])): # Peter Luschny, Nov 08 2010
-
Mathematica
Select[Prime[Range[1000]],PrimeQ[(#-1)/2]&] (* Zak Seidov, Jan 26 2011 *)
-
PARI
g(n) = forprime(x=2,n,y=x+x+1;if(isprime(y),print1(y","))) \\ Cino Hilliard, Sep 12 2004
-
PARI
[x|x<-primes(10^3), bigomega(x-1)==2] \\ Altug Alkan, Nov 04 2015
-
Python
from sympy import isprime, primerange def aupto(limit): alst = [] for p in primerange(1, limit+1): if isprime((p-1)//2): alst.append(p) return alst print(aupto(2963)) # Michael S. Branicky, May 07 2021
Formula
a(n) = 2 * A005384(n) + 1.
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Feb 15 2001
Comments