A005430 Apéry numbers: n*C(2*n,n).
0, 2, 12, 60, 280, 1260, 5544, 24024, 102960, 437580, 1847560, 7759752, 32449872, 135207800, 561632400, 2326762800, 9617286240, 39671305740, 163352435400, 671560012200, 2756930576400, 11303415363240, 46290177201840, 189368906734800, 773942488394400
Offset: 0
References
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.25).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Kunle Adegoke, Robert Frontczak, and Taras Goy, Fibonacci-Catalan Series, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 22 (2022), #A110.
- Laurent Alonso and Edward M. Reingold, Analysis of Boyer and Moore's MJRTY Algorithm, 2012.
- T. Amdeberhan and Henri Cohen, Bernoulli sum meets golden number, MathOverflow, version of 2017-06-15.
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- Benjamin Ruoyu Kan, Polynomial Approximations for Quantum Hamiltonian Complexity, Bachelor's thesis, Harvard Univ., 2023.
- Hans J. H. Tuenter, Walking into an absolute sum, arXiv:math/0606080 [math.NT], 2006. Published version on Walking into an absolute sum, The Fibonacci Quarterly, 40(2):175-180, May 2002.
- Alfred J. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3), Math. Intelligencer 1 (1978/1979), 195-203.
- I. J. Zucker, On the series Sum(k>=1) C(2k,k)^(-1)*k^(-n) and related sums, J. Number Theory, Vol. 20, No. 1 (1985), 92-102.
- Wadim Zudilin, An elementary proof of Apery's theorem, arXiv:math/0202159 [math.NT], 2002.
Crossrefs
Programs
-
GAP
List([0..30], n-> n*Binomial(2*n,n)); # G. C. Greubel, Dec 09 2018
-
Magma
[n*Binomial(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 09 2018
-
Maple
A005430 := n -> n*binomial(2*n, n);
-
Mathematica
Table[n*Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, May 29 2015 *)
-
PARI
a(n)=-(-1)^n*real(polcoeff(serlaplace(x^2*besselh1(1,2*x)),2*n)) \\ Ralf Stephan
-
Sage
[n*binomial(2*n,n) for n in range(30)] # G. C. Greubel, Dec 09 2018
Formula
Sum_{n >= 1} 1/a(n) = Pi*sqrt(3)/9. - Benoit Cloitre, Apr 07 2002
G.f.: 2*x/sqrt((1-4*x)^3). - Marco A. Cisneros Guevara, Jul 25 2011
E.g.f.: a(n) = n!* [x^n] exp(2*x)*2*x*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
D-finite with recurrence (-n+1)*a(n) + 2*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 2*x*(1-4*x)^(-3/2) = -G(0)/2 where G(k) = 1 - (2*k+1)/(1 - 2*x/(2*x - (k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n-1) = Sum_{k=0..floor(n/2)} k*C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(phi)/sqrt(5) = A086466, where phi is the golden ratio. (End)
1/a(n) = (-1)^n*Sum_{j=0..n-1} binomial(n-1,j)*Bernoulli(j+n)/(j+n) for n >= 1. See the Amdeberhan & Cohen link. - Peter Luschny, Jun 20 2017
1/a(n) = Sum_{k=0..n} (-1)^(k+1)*binomial(n,k)*HarmonicNumber(n+k) for n >= 1. - Peter Luschny, Aug 15 2017
Sum_{n>=1} x^n/a(n) = 2*sqrt(x/(4-x))*arcsin(sqrt(x)/2), for abs(x) < 4 (Adegoke et al., 2022, section 6, p. 11). - Amiram Eldar, Dec 07 2024
Extensions
More terms from James Sellers, May 01 2000
Comments