A005442 a(n) = n!*Fibonacci(n+1).
1, 1, 4, 18, 120, 960, 9360, 105840, 1370880, 19958400, 322963200, 5748019200, 111607372800, 2347586841600, 53178757632000, 1290674601216000, 33413695451136000, 919096314200064000, 26768324463648768000
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..416
- P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987
- P. R. J. Asveld, A family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 81-83.
- P. R. J. Asveld, Another family of Fibonacci-like sequences, Fib. Quart., 25 (1987), 361-364.
- P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 494
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
Magma
[Factorial(n)*Fibonacci(n+1): n in [0..20]]; // G. C. Greubel, Nov 20 2022
-
Mathematica
Table[Fibonacci[n + 1]*n!, {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
-
PARI
a(n) = n!*fibonacci(n+1) \\ Charles R Greathouse IV, Oct 03 2016
-
SageMath
[fibonacci(n+1)*factorial(n) for n in range(21)] # G. C. Greubel, Nov 20 2022
Formula
a(n) = A039948(n,0).
E.g.f.: 1/(1-x-x^2).
D-finite with recurrence a(n) = n*a(n-1)+n*(n-1)*a(n-2). - Detlef Pauly (dettodet(AT)yahoo.de), Sep 22 2003
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. Cf. A080599 and A052585. - Peter Bala, Dec 07 2011
Extensions
Comments from Wolfdieter Lang
Comments