cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005557 Number of walks on square lattice.

Original entry on oeis.org

42, 132, 297, 572, 1001, 1638, 2548, 3808, 5508, 7752, 10659, 14364, 19019, 24794, 31878, 40480, 50830, 63180, 77805, 95004, 115101, 138446, 165416, 196416, 231880, 272272, 318087, 369852, 428127, 493506, 566618, 648128, 738738, 839188, 950257, 1072764
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sixth diagonal of Catalan triangle A033184.
Sixth column of Catalan triangle A009766.

Programs

  • GAP
    List([0..30],n->(n+1)*Binomial(n+10,4)/5); # Muniru A Asiru, Apr 10 2018
    
  • Magma
    [(n+1)*Binomial(n+10, 4)/5: n in [0..40]]; // Vincenzo Librandi, Mar 20 2013
    
  • Maple
    [seq(binomial(n,5)-binomial(n,3),n=9..55)]; # Zerinvary Lajos, Jul 19 2006
    A005557:=(42-120*z+135*z**2-70*z**3+14*z**4)#(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(14 z^4 - 70 z^3 + 135 z^2 - 120 z + 42)/(z - 1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{42,132,297,572,1001,1638},40] (* Harvey P. Dale, Feb 22 2024 *)
  • PARI
    a(n)=(n+1)*binomial(n+10,4)/5 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = A009766(n+5, 5) = (n+1)*binomial(n+10, 4)/5.
G.f.: (42 - 120*x + 135*x^2 - 70*x^3 + 14*x^4)/(1-x)^6; numerator polynomial is N(2;4, x) from A062991.
a(n) = binomial(n+9,5) - binomial(n+9,3). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+9, 4). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 2509/63504.
Sum_{n>=0} (-1)^n/a(n) = 951395/63504 - 1360*log(2)/63. (End)

Extensions

More terms and formula from Wolfdieter Lang, Sep 04 2001