cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005586 a(n) = n*(n+4)*(n+5)/6.

Original entry on oeis.org

0, 5, 14, 28, 48, 75, 110, 154, 208, 273, 350, 440, 544, 663, 798, 950, 1120, 1309, 1518, 1748, 2000, 2275, 2574, 2898, 3248, 3625, 4030, 4464, 4928, 5423, 5950, 6510, 7104, 7733, 8398, 9100, 9840, 10619, 11438, 12298, 13200, 14145, 15134, 16168, 17248
Offset: 0

Views

Author

Keywords

Comments

Number of walks on square lattice.
Number of standard tableaux of shape (n+2,3) (n >= 1). - Emeric Deutsch, May 20 2004
Number of left factors of Dyck paths from (0,0) to (n+5,n-1). E.g. a(1)=5 because we have UDUDUD, UDUUDD, UUDDUD, UUDUDD and UUUDDD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jan 25 2005
Column 4 of Catalan triangle A009766. - Zerinvary Lajos, Nov 25 2006
Sum of first n triangular numbers minus next triangular number. - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
Number of packed increasing tableaux of shape 3 X (n+1) with alphabet [n+4]. - Oliver Pechenik, Jan 03 2022

Examples

			G.f. = 5*x + 14*x^2 + 28*x^3 + 48*x^4 + 75*x^5 + 110*x^6 + 154*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=A053121(n+5,n-1).

Programs

  • Magma
    [n*(n+4)*(n+5)/6: n in [0..50]]; // Vincenzo Librandi, Jun 09 2013
  • Maple
    [seq(binomial(n,3 )-binomial(n,1),n=4..48)]; # Zerinvary Lajos, Nov 25 2006
    a:=n->sum ((j-3)*j/2,j=0..n): seq(a(n),n=4..48); # Zerinvary Lajos, Dec 17 2006
    A005586:=z*(5-6*z+2*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(sum(binomial(n,m), m=1..3)-n^2,n=5..49); # Zerinvary Lajos, Jun 19 2008
  • Mathematica
    Clear[lst,n,a,f]; f[n_]:=n*(n+1)/2; a=0;lst={};Do[a+=f[n];AppendTo[lst,a-f[n+1]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *)
    CoefficientList[Series[x (5 - 6 x + 2 x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Table[(n(n+4)(n+5))/6,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,14,28},50] (* Harvey P. Dale, Jul 14 2018 *)
  • PARI
    {a(n) = n * (n+4) * (n+5) / 6}; /* Michael Somos, Apr 13 2007 */
    

Formula

G.f.: x * (5 - 6*x + 2*x^2) / (1 - x)^4.
E.g.f.: (5*x + 2*x^2 + x^3/6) * exp(x). - Michael Somos, Apr 13 2007
Let t(n) = n*(n+1)/2, te(n) = (n+1)*(n+2)*(n+3)/6. Then a(n-4) = -2*t(n) + te(n-1), e.g., a(2) = -2*t(6) + te(5) = -2*21 + 56 = 14, where te(n) are the tetrahedral numbers A000292 and t(n) are the triangular numbers A000217. - Jon Perry, Jul 23 2003
a(n) = C(5+n, 3)-C(5+n, 2). - Zerinvary Lajos, Jan 09 2006
a(n) = C(n,3) - C(n,1), n>=4. - Zerinvary Lajos, Nov 25 2006
a(n) = - A005581(-4-n) for all n in Z. - Michael Somos, Apr 13 2007
a(n) = A214292(n+4,2). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 77/200.
Sum_{n>=1} (-1)^(n+1)/a(n) = 363/200 - 12*log(2)/5. (End)
a(n) = A005581(n+2)-2. - R. J. Mathar, Nov 22 2024

Extensions

M3842=A005555 in the 1995 EIS was the same sequence as this.
More terms from Zerinvary Lajos, Jan 09 2006