A005725 Quadrinomial coefficients.
1, 1, 3, 10, 31, 101, 336, 1128, 3823, 13051, 44803, 154518, 534964, 1858156, 6472168, 22597760, 79067375, 277164295, 973184313, 3422117190, 12049586631, 42478745781, 149915252028, 529606271560, 1872653175556, 6627147599476, 23471065878276, 83186110269928
Offset: 0
Examples
For n=2, (x^3 + x^2 + x + 1)^2 = x^6 + 2x^5 + 3x^4 + 4x^3 + 3x^2 + 2x + 1, and the coefficient of x^n = x^2 is 3, so a(2) = 3. - _Michael B. Porter_, Aug 15 2016
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- R. K. Guy, Letter to N. J. A. Sloane, 1987
Programs
-
Magma
P
:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2+x^3)^n)[n+1]: n in [0..25] ]; // Bruno Berselli, Jul 05 2011 -
Maple
seq(add(binomial(n,2*k)*binomial(n,k), k=0..floor(n/2)), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 a := n -> add(binomial(n,j)*binomial(n,2*j),j=0..n): seq(a(n), n=1..25); # Zerinvary Lajos, Feb 12 2007 seq(coeff(series(RootOf((16*x^3+8*x^2+11*x-4)*A^3+(3-2*x)*A+1, A), x=0, n+1), x, n), n=0..30); # Mark van Hoeij, Apr 30 2013
-
Mathematica
a[n_] := Coefficient[(1+x+x^2+x^3)^n, x^n]; a[0] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 15 2011 *) Table[HypergeometricPFQ[{1/2 - n/2, -n, -n/2}, {1/2, 1}, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
-
Maxima
quadrinomial(n,k):=coeff(expand((1+x+x^2+x^3)^n),x,k); makelist(quadrinomial(n,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
-
PARI
a(n)=my(x='x); polcoeff((x^3+x^2+x+1)^n,n) \\ Charles R Greathouse IV, Feb 07 2017
-
Python
from math import comb def A005725(n): return sum((-1 if k&1 else 1)*comb(n,k)*comb((n-(k<<1)<<1)-1,n-(k<<2)) for k in range((n>>2)+1)) if n else 1 # Chai Wah Wu, Aug 09 2025
Formula
a(n) = Sum_{i+j+k=n, 0<=k<=j<=i<=n} C(n,i)*C(i,j)*C(j,k). - Benoit Cloitre, Jun 06 2004
G.f.: A(x) where (16*x^3+8*x^2+11*x-4)*A(x)^3+(3-2*x)*A(x)+1 = 0. - Mark van Hoeij, Apr 30 2013
Recurrence: 2*n*(2*n-1)*(13*n-19)*a(n) = (143*n^3 - 352*n^2 + 251*n - 54)*a(n-1) + 4*(n-1)*(26*n^2 - 51*n + 15)*a(n-2) + 16*(n-2)*(n-1)*(13*n-6)*a(n-3). - Vaclav Kotesovec, Aug 10 2013
a(n) ~ sqrt((39+7*39^(2/3)/c+39^(1/3)*c)/156) * ((b+11+217/b)/12)^n/sqrt(Pi*n), where b = (6371+624*sqrt(78))^(1/3), c = (117+2*sqrt(78))^(1/3). - Vaclav Kotesovec, Aug 10 2013
a(n) = A008287(n, n). - Sean A. Irvine, Aug 15 2016
a(n) = hypergeom([1/2-n/2, -n, -n/2], [1/2, 1], -1). - Vladimir Reshetnikov, Oct 04 2016
From Peter Bala, Mar 31 2020: (Start)
a(n) = Sum_{k = 0..floor(n/4)} (-1)^k*C(n,k)*C(2*n-4*k-1,n-4*k).
a(p) == 1 (mod p^2) for any prime p >= 3. More generally, we may have a(p^k) == a(p^(k-1)) (mod p^(2*k)) for k >= 2 and any prime p >= 3.
The sequence defined by b(n) := [x^n] ( F(x)/F(-x) )^n, where F(x) = 1 + x + x^2 + x^3, may satisfy the stronger supercongruences b(p) == 2 (mod p^3) for prime p >= 5 (checked up to p = 499). (End)
a(n) = Sum_{k = 0..floor(n/2)} binomial(n,k)*binomial(n,2*k). - Peter Bala, Mar 16 2023
Extensions
More terms from James Sellers, Jul 12 2000
Comments