cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005807 Sum of adjacent Catalan numbers.

Original entry on oeis.org

2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, 950912, 3417340, 12369285, 45052515, 165002460, 607283490, 2244901890, 8331383610, 31030387440, 115948830660, 434542177290, 1632963760974, 6151850548776
Offset: 0

Views

Author

Keywords

Comments

The aerated sequence has Hankel transform F(n+2)*F(n+3) (A001654(n+2)). - Paul Barry, Nov 04 2008

Examples

			G.f. = 2 + 3*x+ 7*x^2 + 19*x^3 + 56*x^4 + 174*x^5 + 561*x^6 + 1859*x^7 + ...
		

References

  • D. E. Knuth, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [((5*n+4)*Factorial(2*n))/(Factorial(n)*Factorial(n+2)): n in [0..30] ];  // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A005807List := proc(m) local A, P, n; A := [2,3]; P := [2,3];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
    A := [op(A), P[-1]] od; A end: A005807List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[n_]:=Binomial[2*n, n]*(5*n+4)/(n+1)/(n+2); (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    a[ n_] := If[ n < 0, 0, CatalanNumber[n] + CatalanNumber[n + 1]]; (* Michael Somos, Jan 17 2015 *)
    Total/@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Jun 21 2025 *)
  • PARI
    {a(n) = if( n<0, 0, binomial(2*n, n) * (5*n+4) / ((n+1) * (n+2)))};
    
  • Python
    from _future_ import division
    A005807_list, b = [], 2
    for n in range(10**3):
        A005807_list.append(b)
        b = b*(4*n+2)*(5*n+9)//((n+3)*(5*n+4)) # Chai Wah Wu, Jan 28 2016
  • Sage
    [catalan_number(i)+catalan_number(i+1) for i in range(0,25)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = C(n)+C(n+1) = ((5*n+4)*(2*n)!)/(n!*(n+2)!).
G.f. A(x) satisfies x^2*A(x)^2 + (x-1)*A(x) + (x+2) = 0. - Michael Somos, Sep 11 2003
G.f.: (1-x - (1+x)*sqrt(1-4*x)) / (2*x^2) = (4+2*x) / (1-x + (1+x)*sqrt(1-4*x)). a(n)*(n+2)*(5*n-1) = a(n-1)*2*(2*n-1)*(5*n+4), n>0. - Michael Somos, Sep 11 2003
a(n) ~ 5*Pi^(-1/2)*n^(-3/2)*2^(2*n)*{1 - 93/40*n^-1 + 625/128*n^-2 - 10227/1024*n^-3 + 661899/32768*n^-4 ...}. - Joe Keane (jgk(AT)jgk.org), Sep 13 2002
G.f.: c(x)*(1+c(x))= (-1 +(1+x)*c(x))/x with the g.f. c(x) of A000108 (Catalan).
a(n) = binomial(2*n,n)/(n+1)*hypergeom([-1,n+1/2],[n+2],-4). - Peter Luschny, Aug 15 2012
D-finite with recurrence (n+2)*a(n) + (-3*n-2)*a(n-1) + 2*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
0 = a(n)*(+16*a(n+1) + 38*a(n+2) - 18*a(n+3)) + a(n+1)*(-14*a(n+1) + 19*a(n+2) - 7*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Jan 17 2015
0 = a(n)^2*(+368*a(n+1) - 182*a(n+2)) + a(n)*a(n+1)*(-306*a(n+1) + 317*a(n+2)) + a(n)*a(n+2)*(-77*a(n+2)) + a(n+1)^2*(-14*a(n+1) - 6*a(n+2)) + a(n+1)*a(n+2)*(+8*a(n+2)) for all n>=0. - Michael Somos, Jan 17 2015
E.g.f.: (BesselI(0,2*x) - (x - 1)*BesselI(1,2*x)/x)*exp(2*x). - Ilya Gutkovskiy, Jun 08 2016
G.f. with 1 prepended: Let E(x) = exp( Sum_{n >= 1} binomial(5*n,2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/5) = ( x/series reversion of x*D(x)^5 )^(1/5), where D(x) = 1 + 2*x + 23*x^2 + 371*x^3 + ... is the o.g.f. for A060941 .... Cf. A274052 and A274244. - Peter Bala, Jan 01 2020

Extensions

More terms from Joe Keane (jgk(AT)jgk.org), Feb 08 2000
Asymptotic series corrected and extended by Michael Somos, Sep 11 2003